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Abstract

This paper analyses the design of optimal nonlinear savings taxation, in a multi-period consumption-

savings economy where consumers face persistent, uninsurable shocks to the marginal value that they

place on consuming. Its main contributions are: (a) to show that shocks of this kind generically justify

positive marginal savings taxes, and (b) to characterise these taxes by reference to a limited number

of sufficient statistics. The method for obtaining this characterisation is generalisable, and provides

a roadmap for reconnecting ‘Mirrleesian’ and ‘sufficient statistics’ approaches to dynamic taxation.

Intuitively, dynamic asymmetric information problems imply significant restrictions on intertempo-

ral consumption elasticities. These restrictions keep sufficient statistics representations manageable,

despite the multi-dimensional choice setting.
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1 Introduction

This paper revisits the problem of optimal taxation in dynamic economies with private information.

Adapting the dynamic asymmetric information problem due to Atkeson and Lucas (1992), it considers

a government that would like to insure individuals against persistent, unobservable shocks over time

to their marginal utility of consumption. Though this environment has been studied extensively in the

social insurance literature, I derive a number of novel results that clarify the character of optimal policy

within it. In doing so, I provide a more general contribution to the links between dynamic Mirrleesian

and sufficient statistic analyses of optimal taxation. Specifically, I show that the assumptions embedded

in the dynamic asymmetric information problem provide sufficient simplifications for optimal nonlinear

taxation to be characterised by a small number of conventional behavioural elasticities, despite the a

priori complexity of an infinite-horizon, incomplete market setting.

As a first contribution, I show that a large class of incentive-feasible allocations in the Atkeson-Lucas

setting can be decentralised in a simple market economy, in which individuals make period-by-period

choices between consumption and savings. Relative to a conventional market economy, the only addi-

tional component is a nonlinear tax on each period’s savings. The decentralisation is possible for any

allocation that gives greater future consumption to individuals who choose lower current consumption.

This amounts to saying that I focus on allocations where future consumption is increasing in current

savings.

The main focus of the paper is on the optimal determination of the savings tax schedule. I show that

it is generically optimal to set a positive marginal tax rate on savings in all time periods and for all shock

histories – strictly positive away from the extreme ends of the savings distribution. The revenue from

this savings tax is used to fund a positive, uniform lump-sum transfer each period, which permits higher

within-period consumption for those with high marginal utility, relative to what they would be able to

afford under a laissez-faire system.

For any given time period and shock history, I express the optimal marginal savings tax rate as a

function of a small number of behavioural statistics and statistical attributes of the realised savings dis-

tribution. This ‘sufficient statistics’ representation provides a simple, intuitive statement of the mechan-

ical, behavioural and welfare considerations that are relevant to optimal policy design. It is analogous
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to the well-known Saez (2001) condition for optimal labour taxation, and isomorphic to it in the special

case that preference shocks are iid over time.

The derivation of this characterisation represents a promising methodological innovation for the

Mirrleesian, ‘mechanism design’ approach to dynamic taxation, of which this paper is an example.1

A number of writers have expressed scepticism in recent years about the practical relevence of dynamic

Mirrleesian analysis. A common complaint is that it generates implausibly complex policies, whose form

is too dependent on utility functions, type distributions, and other unknowable objects, to have real-

world applicability.2 The results here provide a counter-point to this. The characterisation of optimal

policy that I derive is not significantly more complex than a textbook Saez formula with income effects.

It is written in terms of behavioural objects that are defined independently of the utility function and

hidden type process, with the sole exception of social welfare weights – in which a reference to marginal

utility is standard in the sufficient statistics literature.

Indeed, the most significant feature of this characterisation is precisely its simplicity. Despite the

infinite-horizon setting and continuum of possible shock draws each period, at most three behavioural

statistics are of relevance to an optimal marginal savings tax. These are: the compensated elasticity

of savings with respect to the marginal tax rate, the marginal effect of higher income on savings, and

a compensated elasticity that measures effect of a change to insurance in the present period on prior

savings.

This simplification can be interpreted through the lens of the Atkinson-Stiglitz theorem. Consistent

with the wider literature, I impose a Markovian structure on shocks. This means that conditional on the

next period’s type draw, preferences across alternative insurance schemes more than one period ahead are

independent of an individual’s current type. Following the logic of Atkinson-Stiglitz, this independence

implies that there is no gain to distorting allocations in later time periods, in order to improve the struc-

ture of incentives more than one period previously. This keeps the relevant behavioural considerations

for policy design to a manageable level.

The important general lesson, I argue, is that a mechanism design approach can imply structural

1Following Mirrlees (1971), this approach focuses on the design of optimal dynamic allocations subject only to information
frictions, without assuming any particular decentralisation, or a priori limits on the set of tax instruments.

2See, for instance, the discussions in Diamond and Saez (2011), Piketty and Saez (2013b), and Stantcheva (2020).
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restrictions on consumer preferences that allow optimal dynamic tax problems to become tractable. Far

from complexifying, it can provide a powerful, theoretically-grounded basis for simple policy advice in

dynamic settings.

1.1 Preview of main characterisation

To substantify this discussion, I briefly preview the main characterisation result – which features as

Theorem 1 in the body of the paper.3 When a nonlinear savings tax decentralises the constrained-optimal

allocation, I show that it satisfies the following trade-off within each period, at each contemporaneous

savings level 𝑠′:

E

[
1 −𝑇 ′ (𝑠) 𝑑𝑠

𝑑𝑀
−𝑔 (𝑠)

���� 𝑠 ≥ 𝑠′] = 𝑇 ′ (𝑠′) 𝜀𝑠𝑎 (𝑠′) + 𝑅𝑇 ′
−1 (𝑠−1) 𝑠−1𝜖

𝑠
−1 (𝑠

′) (1)

This equation can be read as comparing the costs and benefits from a cut in the marginal tax rate

at 𝑠′, for a cross-section of types with a common history. The left-hand side gives the net fiscal cost of

the tax cut, due to a transfer of resources to higher savers. It is made up of a mechanical unit cost, less

the marginal tax revenue that is recovered through a standard income effect on savings, 𝑇 ′ (𝑠) 𝑑𝑠
𝑑𝑀

, less a

social welfare weight, 𝑔 (𝑠), that captures the welfare value of transfering income to an individual whose

savings are 𝑠. The welfare weight – an endogenous object that evolves with individuals’ wealth levels –

varies across types with a common history in proportion to their marginal utility of consumption alone.

Thus the policymaker is conditionally utilitarian. It is decreasing in savings, because higher savers have

a relatively low contemporaneous marginal utility of consumption.

The right-hand side of the equation gives the fiscal benefits of substitution effects that are induced

by the tax change. When taxes are cut, savings in the current period increase in proportion to the con-

temporaneous savings elasticity 𝜀𝑠 . This raises revenue in proportion to the marginal tax rate𝑇 ′ (𝑠′), and

to the measure of types at 𝑠′, relative to those above: 𝑎 (𝑠′) is the local Pareto parameter for the realised

savings distribution.

Cutting taxes at 𝑠′ in the current period may also change savings in the previous period, by an amount

proportional to a compensated cross elasticity 𝜖𝑠−1 (𝑠
′). This raises additional income in the previous

3Some notation, including time indexation, is dropped for simplicity.
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period, in proportion to that period’s marginal tax rate 𝑇 ′
−1 (𝑠−1), whose relative value depends on the

gross real interest rate 𝑅.

The cross elasticity 𝜖𝑠−1 (𝑠
′) is the least conventional of the objects in the characterisation, and is partic-

ular to consumption choice models with imperfect insurance. It is the behavioural response that arises

because of a change to the state-contingent profile of returns provided by the savings instrument. Its

relevance is intrinsically linked to type persistence in the underlying structural model. It is zero when

types are iid.

Equation (1) is also helpful for understanding the significant qualitative result, Theorem 2 in the

paper, that marginal savings taxes are generically positive. Taking substitution effects – the right-hand

side – in isolation, it would generally be beneficial to cut marginal taxes on any given agent to zero. By

incentivising additional savings, this raises fiscal revenue until the last unit saved is no longer being

taxed.

But against this efficiency gain is an equity loss – the left-hand side. When marginal taxes are cut

at 𝑠′, income is necessarily redistributed to higher savers, whose marginal utility is lower. Reflecting

the individual’s own ex-ante insurance preferences, this is an undesirable diversion of resources. It is

optimal to retain positive marginal savings taxes, as this allows more resources to be directed towards

lower savers.

1.2 Paper outline

The rest of the paper is organised as follows. Section 2 provides an overview of related literature. Section

3 introduces the detailed setup of the dynamic information-theoretic problem that I study. Section 6

outlines how nonlinear savings taxes can be used to decentralise incentive-compatible allocations for

this environment, and derives sufficient conditions on the allocation for this decentralisation to work.

Like much of the optimal taxation literature dating back to Mirrlees (1971), I keep analysis tractable

via a ‘first-order’ approach to incentive compatibility: Section 4 reminds readers of this approach, and

provides a novel, intuitive increasingness condition on the allocation that guarantees its validity.

To aid understanding, the main characterisation is presented constructively, in steps. In Section 5 I

use standard methods to characterise constrained-optimal allocations by reference to the costs and ben-
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efits of changing utility levels for a cross-section of individuals. The resulting expressions are insightful,

and reveal novel features about the dynamics of consumption when types are persistent, but they rely

heavily on arguments of the utility function. Section 7 explains intuitively how these utility-based ex-

pressions can be mapped to a practical characterisation of optimal tax rates, and presents intermediate

results to this end. The main sufficient statistics characterisation that follows is given in Section 8. Section

9 explores the qualitative properties of optimal savings taxes, notably the result that optimal marginal

tax rates are positive. Section 10 explains the limited role for intertemporal cross-elasticities in character-

isation of optimal taxes, with particular reference to the Atkinson-Stiglitz theorem. Section 11 provides

an illustrative quantification of marginal tax rates for top savings levels, based on the formula obtained

in Section 8. Section 12 concludes.

All but the most straightforward proofs are relegated to the appendix.

2 Relation to literature

The basic insurance problem that I study was first popularised by Atkeson and Lucas (1992), who fo-

cused on the properties of constrained-optimal allocations in the presence of unobservable shocks to

marginal utility. Their paper gave particular attention to long-run outcomes, showing that the immis-

eration result of Thomas and Worrall (1990) – whereby measure 1 of agents see their consumption con-

verge to zero over time – carried over to their setting, as well as emphasising that the optimum could

not be decentralised via conventional linear pricing. Technically, Atkeson and Lucas assumed an iid

type distribution, with types drawn from a finite set period-by-period – a structure retained by most of

the literature that explores the sensitivity of their immiseration result.4 The current paper instead allows

for persistent (Markovian) type draws, which has non-trivial implications for consumption dynamics

relative to the iid case. I also assume types are drawn from a continuum, which proves crucial in finding

a mathematical link from the mechanism design characterisation to behavioural statistics.

More broadly, the present paper is situated in the dynamic Mirrleesian public finance tradition,

analysing optimal tax systems subject to the deep information frictions that necessitate departures from

4See, for instance, Sleet and Yeltekin (2006) and Farhi and Werning (2007). Recent work by Bloedel, Krishna and Leukhina
(2021) considers persistent shocks in the original Thomas-Worral environment, again retaining a finite type set.
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the Second Welfare Theorem. Most of the contributions to this literature consider the traditional Mirrlees

setting of endogenous labour supply and unobservable, stochastic productivity. Seminal papers include

Golosov, Kocherlakota and Tsyvinski (2003), Kockerlakota (2005) and Golosov, Tsyvinski and Werning

(2006), with Kocherlakota (2010) providing an excellent overview.

Much – though not all – of this literature has focused on characterising the differences between

constrained-optimal allocations and laissez-faire outcomes, rather than focusing directly on tax instru-

ments.5 Emphasis in the early papers was on the well-known ‘inverse Euler equation’ – an expression

that implies a distortion relative to savings behaviour under autarky, but does not directly map to any

particular tax instrument.6 Likewise, more recent papers by Farhi and Werning (2013) and Golosov,

Troshkin and Tsyvinski (2016) have examined the properties of the ‘wedge’ between the consumption-

labour marginal rate of substitution and the marginal product of labour. But in dynamic settings the link

between this wedge and labour income tax rate is no longer direct. By contrast, the main characterisation

in the present paper relates to the marginal savings tax rate itself – an object directly controlled by policy.

Interesting parallels to the current paper are found in Albanesi and Sleet (2006). The principal focus

of their paper is the possibility of a simple market decentralisation for a specific class of dynamic Mir-

rleesian problems – where productivity shocks are iid, and labour and consumption separable. As in

the present paper, these authors find limited intertemporal dependence in tax policy, with past choice

only influencing current policy through an individual’s retained wealth level. Though they do not draw

the link to Atkinson and Stiglitz (1976), their assumptions together imply that the value of real output –

whether saved or consumed – is independent of one’s current type. This suggests the structural reasons

for limited intertemporal dependence in policy are likely very similar to what is presented here.

The current paper follows Kapička (2013), Farhi and Werning (2013), Golosov, Troshkin and Tsyvinski

(2016), Stantcheva (2017), Hellwig (2021) and Hellwig and Werquin (2022) in making use of the first-

order approach to incentive compatibility. Early contributions to the dynamic Mirrlees literature were

wary of the risks of neglecting global incentive compatibility, but this has faded in recent years, due

5Kocherlakota (2005) is an important exception, though his decentralisation retains much of the spirit of a direct mechanism:
agents are offered limited menus of options, with extreme punishments for behaviours inconsistent with the constrained-
optimal allocation.

6The inverse Euler condition had previously been derived in different settings by Diamond and Mirrlees (1978) and Roger-
son (1985).
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both to increased understanding of the conditions for validity – to which we contribute – and the simple

difficulty in making progress otherwise. Pavan, Segal and Toikka (2014) provided important new clarity

on the conditions for the first-order approach to be valid. Though their main focus is on settings from

the microeconomic literature with quasilinear preferences, like Hellwig (2021) the current paper adapts

their methodology to a dynamic Mirrleesian setting.

Away from the dynamic Mirrlees literature, the results in this paper contribute to the influential

movement to link policy prescriptions to observable ‘sufficient statistics’, insofar as possible. From orig-

inal contributions by Diamond (1998) and Saez (2001), which re-cast the static Mirrlees (1971) model by

reference to instruments rather than allocations, this approach now encompasses broad areas of macro

and micro policy design.7 Yet in contrast with the static literature, for dynamic tax problems ‘sufficient

statistics’ and ‘mechanism design’ approaches are commonly interpreted as rivals rather than comple-

ments – that is, as mutually inconsistent methods that generate distinct policy prescriptions, rather than

equivalent formulations linked by a duality relationship.

The reason for this divorce has been a desire to obtain comparably simple policy lessons for dynamic

tax environments as for static, and the seeming difficulty of achieving this in a mechanism design setting.

To achieve this, influential papers by Piketty and Saez (2013a) and Saez and Stantcheva (2018) have

deliberately discarded information-theoretic foundations, in favour of a long-run focus: tax instruments

are assumed to be time-invariant, and the effects of any changes are analysed purely by reference to

their mechanical, welfare and behavioural effects in steady state.8 This overcomes the need to consider

arbitrary intertemporal cross elasticities – the response of savings in period 𝑡 to taxation in 𝑡 + 59, say

– by asserting that all that matters is what happens in the long run.9 The present paper instead shows

that simple, intuitive sufficient statistics characterisations can arise from a mechanism design approach,

attributing this to the standard preference assumptions made in these settings. Thus I highlight an

alternative route to policy insight from the more radical focus on long-run outcomes alone.

7See, for instance, Scheuer and Werning (2017) and Ferey, Lockwood and Taubinsky (2021). Kleven (2021) provides a broad
discussion of the sufficient statistics approach.

8Stantcheva (2020) gives an excellent summary of the approach.
9Golosov, Tsyvinski and Werquin (2014) provide a general behavioural decomposition of the effects of tax changes, allow-

ing for arbitrary cross-elasticities, also without direct reference to information frictions. The difficulty they encounter is the
multiplicity of potential consumer substitution responses across periods and states of the world, which makes applicability a
challenge.
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By offering a novel justification for savings taxation, this paper also contributes to the large general

literature on the desirability of intertemporal distortions. Work on this topic has moved on considerably

from the classic Chamley (1986) and Judd (1985) zero tax results, due both to the direct assult of Straub

and Werning (2020),10 and the earlier findings that savings taxes could play a useful role in computa-

tional Ramsey environments.11 Yet a common theme in this literature remains that savings distortions

are only introduced because of significant limitations elsewhere in the tax system – particularly credit

constraints, limits on age-dependent taxation, or arbitrary tax ceilings. It provides few direct arguments

for savings taxes. In this regard the present paper differs: if savings reveal consumption need, and the

government would like to redistribute according to consumption need, then a savings tax is the most

direct, appropriate intervention.

Finally, this paper has links to the growing microeconomic mechanism design literature that gives

particular attention to the problems implied by type persistence.12 Current work by Bloedel, Krishna

and Strulovici (2020), Bloedel, Krishna and Leukhina (2021) and Makris and Pavan (2020) deploy vari-

ous settings to explore the dynamics of wedges in problems without quasilinearity. The present paper

provides a novel decomposition of consumption dynamics into two distinct multiplier processes – one

stationary, one nonstationary – that helps shed light on the distinct roles played by type persistence and

risk aversion in these settings.

3 Model setup

This section and the next present the information-theoretic dynamic social insurance problem that is the

starting point for the analysis.

3.1 Preliminaries

Time is discrete but infinite, indexed by the natural numbers and starting in period zero. The economy

consists of a measure-1 continuum of individuals, plus a policmaker whose role is to provide some

10Chari, Nicolini and Teles (2020) and Greulich, Laczo and Marcet (2022) explore the limitations of the Straub-Werning
results.

11For instance, Aiyagari (1995), İmrohoroğlu (1998), Erosa and Gervais (2002) and Conesa, Kitao and Krueger (2009).
12Pavan (2017) surveys this literature in detail.
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insurance mechanism against the taste shocks that consumers face period-by-period.

3.2 Preferences and shock structure

There is an aggregate endowment 𝑦𝑡 of real resources in each period 𝑡 , which the policymaker either

owns or can tax lump-sum. Each consumer values contingent consumption streams from each period

𝑠 ≥ 0 onwards according to the criterion𝑈𝑠 :

𝑈𝑠 := E𝑠

∞∑︁
𝑡=𝑠

𝛽𝑡−𝑠𝛼𝑡𝑢 (𝑐𝑡 ) (2)

where 𝑐𝑡 is consumption in period 𝑡 , 𝛽 ∈ (0, 1) is the discount factor, 𝑢 : R+ → R or R++ → R is the period

utility function, and 𝛼𝑡 ∈
[
𝛼 ,𝛼

]
⊂ R+ is the idiosyncratic taste disturbance in 𝑡 , with 𝛼 > 0 and 𝛼 < ∞.

To keep notation compact, we will refer to the interval
[
𝛼 ,𝛼

]
as 𝐴. 𝛼𝑡 ∈ 𝐴𝑡+1 will denote a complete

idiosyncratic history of taste draws up to period 𝑡 , and 𝛼𝑠𝑡 ∈ 𝐴𝑠−𝑡+1 a partial sequence of draws between

periods 𝑡 and 𝑠 (inclusive). I make the following standard assumption on the utility function:

Assumption 1. 𝑢 (·) is twice differentiable, with 𝑢′ (·) > 0 and 𝑢′′ (·) < 0, and satisfies the Inada conditions.

Type draws are assumed to be independent across individuals, so there is no aggregate risk. Since

there is no other intrinsic source of uncertainty, and no policy reason to introduce one artificially, an

agent’s consumption in period 𝑡 will be measurable with respect to their history 𝛼𝑡 alone.

The taste parameter is assumed to follow a Markov process, identical through time in all periods

except the initial period 0. Conditional on drawing 𝛼𝑡 ∈ 𝐴 in period 𝑡 , the distribution of shocks in 𝑡 + 1

is denoted Π (𝛼𝑡+1 |𝛼𝑡 ), with conditional density 𝜋 (𝛼𝑡+1 |𝛼𝑡 ). The equivalent (unconditional) objects for

period 0 are denoted Π (𝛼0) and 𝜋 (𝛼0) respectively. We place the following reguarity structure on the

distributions:

Assumption 2. Both Π (·|·) and 𝜋 (·|·) are continuously differentiable on𝐴2, and 𝜋 (𝛼𝑡 |𝛼𝑡−1) > 0 for all 𝛼𝑡−1 ∈ 𝐴

and 𝛼𝑡 ∈
(
𝛼 ,𝛼

)
. Π (·) and 𝜋 (·) are differentiable, and 𝜋 (𝛼0) > 0 for all 𝛼0 ∈

(
𝛼 ,𝛼

)
.

Notice that the density functions may approach zero at endpoints for the type distribution.

Occasionally it will be useful to make reference to the measure of type histories up to some period 𝑡 .

11



For all 𝑆 ⊆ 𝐴𝑡+1, Π𝑡 (𝑆) denotes the probability that 𝛼𝑡 will lie in 𝑆 . This is induced by Π in the obvious

way. E𝑠 denotes period-𝑠 conditional expectations of a future variable under this process, given an 𝛼𝑠 .

The elasticity of expected next-period type with respect to current type features in some of the anal-

ysis that follows, where it is denoted 𝜀𝛼 (𝛼𝑡 ). Formally, this is defined as follows:

𝜀𝛼 (𝛼𝑡 ) :=
𝛼𝑡

E𝑡 [𝛼𝑡+1 |𝛼𝑡 ]
𝑑E [𝛼𝑡+1 |𝛼𝑡 ]

𝑑𝛼𝑡
(3)

Also important is the responsiveness of the distribution of types at 𝑡 + 1 with respect to type at 𝑡 . This

is well summarised by the statistic 𝜌 (𝛼𝑡+1 |𝛼𝑡 ), defined as the relative responsiveness of Π (𝛼𝑡+1 |𝛼𝑡 ) to log

changes in 𝛼𝑡 by comparison with log changes in 𝛼𝑡+1:13

𝜌 (𝛼𝑡+1 |𝛼𝑡 ) :=
𝛼𝑡

𝛼𝑡+1
·
𝑑 (1−Π (𝛼𝑡+1 |𝛼𝑡 ) )

𝑑𝛼𝑡

𝜋 (𝛼𝑡+1 |𝛼𝑡 )
(4)

Integrating provides a link between the two preceding objects:

∫
𝛼𝑡+1

𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝛼𝑡+1𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 = 𝜀𝛼 (𝛼𝑡 ) E𝑡 [𝛼𝑡+1 |𝛼𝑡 ] (5)

Persistence notwithstanding, higher values of 𝛼 are intended to imply a relative preference for current

consumption. This motivates the following assumption:

Assumption 3. 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) ∈ [0, 1) for all (𝛼𝑡 ,𝛼𝑡+1) ∈ 𝐴2.

It is immediate from (5) that this implies 𝜀𝛼 (𝛼𝑡 ) < 1. This implies that higher current 𝛼 may raise

expectations about future marginal utility, but not by so much as the increase in current marginal utility.

Thus preferences become more present-biased.

Some formulae will also feature the product of successive 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) terms. Hence for all 𝑡 < 𝑠,

𝛼𝑠 ∈ 𝐴𝑠+1, we define 𝐷𝑡 ,𝑠 (𝛼𝑠):

𝐷𝑡 ,𝑠 (𝛼𝑠) :=
𝑠∏

𝑟=𝑡+1

𝜌 (𝛼𝑟 |𝛼𝑟−1) (6)

13Note that in the lognormal case, where:

log𝛼𝑡+1 ∼ 𝑁
(
𝜌 log𝛼𝑡 ,𝜎2

)
for parameters 𝜌 and 𝜎 , we have 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) ≡ 𝜌 .
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and normalise 𝐷𝑡 ,𝑡
(
𝛼𝑡
)
≡ 1.

Related to 𝜌 is the elasticity of the density with respect to lagged type, denoted 𝜋Δ:

𝜋Δ (𝛼𝑡+1 |𝛼𝑡 ) :=
𝛼𝑡

𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
(7)

Integration by parts allows this to be linked to 𝜌 . For instance, for any absolutely continuous function

𝑓 : 𝐴 → R, I have:

∫
𝛼𝑡+1

𝛼𝑡+1 𝑓
′ (𝛼𝑡+1) 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 =

∫
𝛼𝑡+1

𝑓 (𝛼𝑡+1) 𝜋Δ (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (8)

Finally, I impose a standard monotone likelihood condition on 𝜋 . This is not used in the characterisation

results, but plays an important role in confirming that optimal savings taxes are positive.

Assumption 4. For all 𝛼 ′𝑡 , 𝛼
′′
𝑡 with 𝛼 ′𝑡 < 𝛼

′′
𝑡 , the ratio 𝜋 (𝛼𝑡+1 |𝛼 ′′

𝑡 )
𝜋 (𝛼𝑡+1 |𝛼 ′

𝑡 ) is monotone increasing in 𝛼𝑡+1.

An implication of this condition is that 𝜋Δ (𝛼𝑡+1 |𝛼𝑡 ) is monotone increasing in 𝛼𝑡+1.

3.3 Planner choice

The planner’s aim in period 0 is to maximise a simple utilitarian sum, denoted𝑊0:

𝑊0 :=
∫ 𝛼̄

𝛼
𝑈0 (𝛼0) 𝑑Π (𝛼0) (9)

The precise utilitarian form for period 0 is not important, and easily generalised.

The planner can commit perfectly in period 0 to an allocation mechanism for all future dates. This

assumption means that the revelation principle will apply, and so there is no loss in generality from

initially focusing on direct revelation mechanisms in which truth-telling is optimal. Thus individuals

report their type each period, and receive a consumption allocation conditional on their reports to date,

𝑐𝑡
(
𝛼𝑡
)
. A complete set of 𝑐𝑡

(
𝛼𝑡
)

functions for all 𝑡 ≥ 0 and 𝛼𝑡 ∈ 𝐴𝑡+1 is referred to as an allocation.14

The planner’s choice is restricted by the resource and incentive compatibility constraints detailed

14The dependence of 𝑐𝑡 on 𝛼𝑡 will be left implicit where the context allows.
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below, plus a technical interiority restriction. This is defined by a set of scalars {𝐾𝑡 }𝑡≥0 and the bound:�����E𝑡

∞∑︁
𝑠=𝑡

𝛽𝑠−𝑡𝛼𝑠𝑢 (𝑐𝑠 (𝛼𝑠))
����� ≤ 𝐾𝑡 (10)

for all 𝛼𝑡 ∈ 𝐴𝑡+1.

Condition (10) guarantees that information rents are well defined at each history node, but it does

not capture meaningful economic restrictions, and cases where the constraint binds will not be our main

focus. In particular, the value of 𝐾𝑡 can be set arbitrarily large for each 𝑡 . If (10) does not bind for any

𝛼𝑡 following a given 𝛼𝑡−1, period-𝑡 consumption levels will be called interior for this history. If (10)

never binds, the allocation as a whole will be called interior. The focus of the remainder of the paper is

exclusively on interior allocations.

3.4 Resources

Policy choice is subject to two main constraints: resources and incentive compatibility. Taking resources

first:. I assume that there is an exogenous, time-invariant world real interest rate, whose gross value is

𝑅 ≤ 𝛽−1. The constraint requires the net-present value of consumption to equal the net-present value of

endowments:
∞∑︁
𝑡=0

𝑅−𝑡
[
𝑦𝑡 −

∫
𝛼𝑡

𝑐𝑡
(
𝛼𝑡
)
𝑑Π𝑡

(
𝛼𝑡
) ]

≥ 0 (11)

This departs from the structure in Atkeson and Lucas (1992), where no savings technology exists. This

is not important for the characterisation results below, as it is a simple extension to let 𝑅 vary over time,

and to set it period-by-period to a value that ensures
∫
𝛼𝑡 𝑐𝑡

(
𝛼𝑡
)
𝑑Π𝑡

(
𝛼𝑡
)
= 𝑦𝑡 for all 𝑡 .

3.5 Incentive compatibility

Incentive compatibility requires that truth-telling should be optimal for all types in each successive pe-

riod, and after each possible history. This places a set of restrictions in 𝑡 across every subset of types that

share a common 𝛼𝑡−1. It is helpful to characterise it by reference to continuation utilities. Let𝑉𝑡
(
𝛼𝑡−1;𝛼𝑡

)
be the maximised value for 𝑈𝑡 available to an individual with history of type reports 𝛼𝑡−1 and current

14



type 𝛼𝑡 . This has the recursive definition:

𝑉𝑡

(
𝛼𝑡−1;𝛼𝑡

)
= max

𝛼̃𝑡

{
𝛼𝑡𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1

((
𝛼𝑡−1,𝛼𝑡

)
;𝛼𝑡+1

)
𝑑Π (𝛼𝑡+1 |𝛼𝑡 )

}
for all 𝑡 ≥ 0. 15

Incentive compatibility then requires:

𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1

((
𝛼𝑡−1,𝛼 ′𝑡

)
;𝛼𝑡+1

)
𝑑Π

(
𝛼𝑡+1 |𝛼 ′𝑡

)
(12)

≥𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1

((
𝛼𝑡−1,𝛼 ′′𝑡

)
;𝛼𝑡+1

)
𝑑Π

(
𝛼𝑡+1 |𝛼 ′𝑡

)
for all 𝑡 ≥ 0, 𝛼𝑡−1 ∈ 𝐴𝑡 , 𝛼 ′𝑡 ∈ 𝐴 and 𝛼 ′′𝑡 ∈ 𝐴. 𝛼 ′𝑡 here represents the agent’s true type, and 𝛼 ′′𝑡 a candidate

report.

Note that the true type 𝛼 ′𝑡 affects restriction (12) in two ways. Most directly, it controls the marginal

utility of consumption in 𝑡 . But current type also affects the distribution of future type draws, Π
(
𝛼𝑡+1 |𝛼 ′𝑡

)
.

This persistence channel complicates the link between preferences and type, relative to a canonical two-

good screening problem.

An allocation that satisfies constraints (10), (11) and (12) for all histories and all time periods is de-

scribed as incentive-feasible. The planner’s problem is to maximise𝑊0 on the set of incentive-feasible

allocations.

4 First-order incentive compatibility

4.1 A relaxed incentive constraint

Condition (12) implies a continuum of constraints for every element of 𝐴, after every history 𝛼𝑡−1 – a

dimensionality that is not possible to handle tractably. Since there is only one consumption level, and

one continuation value, to solve for at each 𝛼𝑡 , almost all of these constraints must be redundant. In

keeping with much of the literature, I thus replace them with a ‘first-order’ envelope requirement that

is necessary for (12) to be true, but not sufficient. The conjecture, to be verified, is that optimal policy for

15The Markov property of shocks implies that the value of𝑉𝑡+1 is unaffected by the truthfulness, or otherwise, of past reports.
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the simplified constraint set will also be optimal for the more complex constraint set. This is known as

the first-order approach to mechanism design.16

The approach is easiest to define by reference to two state variables: 𝜔𝑡

(
𝛼𝑡−1) , which corresponds to

the average level of utility across agents with a common history 𝛼𝑡−1, and 𝜔Δ
𝑡

(
𝛼𝑡−1) , which summarises

information rents that arise due to the impact of current type on the distribution of future 𝛼 values. These

objects have the following recursive definitions:

𝜔𝑡

(
𝛼𝑡−1

)
:=

∫
𝛼𝑡

{
𝛼𝑡𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

))
+ 𝛽𝜔𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)}
𝑑Π (𝛼𝑡 |𝛼𝑡−1) (13)

𝜔Δ
𝑡

(
𝛼𝑡−1

)
:=

∫
𝛼𝑡

𝜌 (𝛼𝑡 |𝛼𝑡−1) ·
{
𝛼𝑡𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

))
+ 𝛽𝜔Δ

𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)}
𝑑Π (𝛼𝑡 |𝛼𝑡−1) (14)

In subsequent usage the history dependence of these objects will be left implicit so long the meaning

remains clear.

The following result is critical to the characterisation:

Lemma 1. For all 𝑡 ≥ 0 and any given history 𝛼𝑡−1 ∈ 𝐴𝑡 , an incentive-feasible allocation will satisfy the following

envelope condition for all current types 𝛼 ′𝑡 ∈ 𝐴:

𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼 ′𝑡
) )
+ 𝛽𝜔𝑡+1

(
𝛼 ′𝑡
)
= 𝛼𝑢

(
𝑐𝑡

(
𝛼
) )
+ 𝛽𝜔𝑡+1

(
𝛼
)

(15)

+
∫ 𝛼 ′

𝑡

𝛼

1
𝛼𝑡

[
𝛼𝑡𝑢 (𝑐𝑡 (𝛼𝑡 )) + 𝛽𝜔Δ

𝑡+1 (𝛼𝑡 )
]
𝑑𝛼𝑡

I refer to equation (15) as the relaxed incentive constraint. For an arbitrary type 𝛼 ′𝑡 , it decomposes the

value of lifetime utility into the value for the lowest type 𝛼 , plus the sum of ‘information rents’ between

𝛼 and 𝛼 ′𝑡 – that is, the marginal increments to utility that are needed to keep truthful reporting as a local

optimum for all types. These information rents are the objects contained within the integral on the last

line.

An allocation that satisfies the interiority constraint (10), resource constraint (11) and relaxed incen-

16The first-order approach has been used extensively in the dynamic mechanism design literature. Kapička (2013) high-
lighted the computational gains from a lower-dimensional state space when non-local deviations were neglected, with an
application to a dynamic Mirrleesian economy. Farhi and Werning (2013) made use of similar techniques, also in a dynamic
Mirrleesian setting. Pavan, Segal and Toikka (2014) provide detailed a detailed exploration of the first-order approach in prob-
lems with quasilinear preferences, and the approach in the present paper bears close resemblance to theirs.
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tive constraint (15) for all periods and histories is called a relaxed incentive-feasible allocation. The

relaxed planner’s problem is to maximise𝑊0 on the set of relaxed incentive-feasible allocations.

By Lemma 1, the set of relaxed incentive-feasible allocations must contain the set of incentive-feasible

allocations. If the optimal allocation from the set of relaxed incentive-feasible options is also incentive-

feasible, it follows that it must be optimal for the main planner’s problem. Confirming this inclusion is

the central issue in justifying the first-order approach, and the focus of the next subsection.

4.2 Sufficiency

When will the relaxed incentive constraint imply global incentive compatibility? In bivariate problems,

this issue can be addressed by a classic Spence-Mirrlees approach. Given single crossing in preferences,

an appropriate form of monotonicity in the solution is enough. This works because ‘single crossing

plus monotonicity’ allows inference to be drawn about the preferences of all agents, based on the local

preferences of any one.

In a multi-period setting the situation is less straightforward, because current type may influence

preferences in a complex, multidimensional way. In the present environment, this occurs when types

are persistent. In such a case, an increase in 𝛼𝑡 does not just make current consumption more desirable

relative to future. It also changes an agent’s distribution across future draws, Π (𝛼𝑡+1 |𝛼𝑡 ). This means that

an allocation with relatively low 𝑐𝑡 could nonetheless be appealing to an agent with high 𝛼𝑡 , if it delivers

a more advantageous distribution of future outcomes for this type.

I present two alternative criteria for confirming global incentive compatibility. The first is an ‘inte-

gral monotonicity condition’, of the type introduced in quasilinear settings by Pavan, Segal and Toikka

(2014).17 This has the advantage that it is both necessary and sufficient for (15) to imply global incentive

compatibility, but the disadvantage that it depends on properties of the utility function rather than the

nonlinear menu of options alone. In this regard it makes significantly greater informational demands

than an ordinal (monotonicity) condition on the set of allocations. Thus a subsequent corollary gives

a sufficient – but not necessary – monotonicity condition on the allocation alone. This condition has a

particularly clear interpretation by reference to the decentralisation that is introduced later in the paper.

17C.f. their Theorem 3.
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In the appendix I show:18

Proposition 1. A relaxed incentive-feasible allocation is incentive-feasible if and only if for all 𝑡 , 𝛼𝑡−1 ∈ 𝐴𝑡 and(
𝛼 ′𝑡 ,𝛼

′′
𝑡

)
∈ 𝐴2, the following condition is true:

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

{
E𝑡

[ ∞∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡
(
1 −𝐷𝑡 ,𝑠 (𝛼𝑠)

)
𝛼𝑠

[
𝑢

(
𝑐𝑠

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑠𝑡+1

))
−𝑢

(
𝑐𝑠

(
𝛼𝑡−1,𝛼 ′′𝑡 ,𝛼𝑠

𝑡+1

))] �����𝛼𝑡
]}
𝑑𝛼𝑡 ≥ 0 (16)

Since 𝐷𝑡 ,𝑠 (𝛼𝑠) < 1, the following corollary is immediate:

Corollary 1. A relaxed incentive-feasible allocation is incentive-feasible if for all 𝑡 and 𝑠 with 𝑠 > 𝑡 , all 𝛼𝑡−1 ∈ 𝐴𝑡

and all 𝛼𝑠
𝑡+1 ∈ 𝐴𝑠−𝑡+1, the consumption function 𝑐𝑠

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑠𝑡+1

)
is non-increasing in 𝛼𝑡 .

Thus global incentive compatibility is confirmed so long as future consumption is weakly decreasing

in current type, along all subsequent history nodes. This condition has a particularly simple interpreta-

tion when the allocation is decentralised in the manner described in Section 6: it is equivalent to requiring

that higher savings in 𝑡 raise consumption along every subsequent history path, or that consumption is

a normal good at every date-state. Given this, we refer to an allocation that satisfies the requirements of

Corollary 1 a normal allocation. Formally:

Definition. An allocation is called normal if 𝑐𝑠
(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑠𝑡+1

)
is non-increasing in 𝛼𝑡 for all 𝑡 and 𝑠 with

𝑠 > 𝑡 , all 𝛼𝑡−1 ∈ 𝐴𝑡 and Π-almost all 𝛼𝑠
𝑡+1 ∈ 𝐴𝑠−𝑡+1.

Normality – and the global incentive compatibility that it implies – guarantees that period-𝑡 con-

sumption is non-decreasing in 𝛼𝑡 for types with a common history. It has particular relevance because,

as I show in Section6, normality is also sufficient for a simple market decentralisation with nonlinear

taxes to be possible.

For some purposes it is convenient to strengthen the condition, and neglect the possibility that mul-

tiple types bunch at the same consumption value in 𝑡 . To this end, I define ‘strictly normal’ allocations

as follows:

Definition. An allocation is called strictly normal if it is normal and for all 𝑡 and 𝛼𝑡−1 ∈ 𝐴𝑡 there exists

𝛿𝑡
(
𝛼𝑡−1) > 0 such that 𝑐𝑡 (𝛼𝑡−1,𝛼 ′′

𝑡 )−𝑐𝑡 (𝛼𝑡−1,𝛼 ′
𝑡 )

𝛼 ′′
𝑡 −𝛼 ′

𝑡
≥ 𝛿𝑡

(
𝛼𝑡−1) for all

(
𝛼 ′𝑡 ,𝛼

′′
𝑡

)
∈ 𝐴2.

18To simplify presentation, I adopt the convention for definite integrals that
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

{·}𝑑𝛼𝑡 corresponds to −
∫ 𝛼 ′

𝑡

𝛼 ′′
𝑡

{·}𝑑𝛼𝑡 when
𝛼 ′𝑡 > 𝛼

′′
𝑡 .
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That is, current consumption is strictly increasing in 𝛼𝑡 , by an amount that is bounded below with

respect to the change in 𝛼𝑡 .

Note from the definition that a focus on strictly normal allocations will be enough to guarantee, for

any given shock history, that the inverse mapping 𝛼𝑡 (𝑐) – the type associated with each consumption

level – will be uniquely defined, and Lipschitz continuous on all sub-intervals in
(
𝑐𝑡

(
𝛼𝑡−1,𝛼

)
, 𝑐𝑡

(
𝛼𝑡−1,𝛼

) )
where a positive measure of types locate.19

5 Characterising direct allocations

In the present section, I provide a direct characterisation of optimal allocations for the relaxed planner’s

problem. This characterisation expresses the trade-off associated with local changes to the information

rents that are earned by each type at a given history node. Changes to information rents imply changes

to the cross-sectional profile of utilities – and so the resulting expressions trade off the marginal costs

of changing information rents with the marginal costs of providing utility to different agents. Thus the

characterisation, though insightful, relies heavily on arguments of the utility function. It makes no direct

reference to taxes, or the behavioural effects of changes to a system of decentralised market prices.

Yet the results here have substantial instrumental value. Sections 7 and 8 will show how the same

conditions can be reformulated by reference to a consumption-savings decentralisation, introduced in

Section 6. The resulting expressions are elementary manipulations of those derived here, but have inter-

pretations in terms of observable ‘sufficient statistics’.

5.1 Characterisation result

By conventional techniques, I derive the following:

Proposition 2. Suppose an interior allocation is optimal in the relaxed problem. For a cross-section of types in 𝑡

19Once consumption is monotone in type, there can be at most countably many discontinuities in the function 𝑐𝑡
(
𝛼𝑡−1, ·

)
.

𝛼𝑡 (𝑐) is not defined for values of 𝑐 that lie between the left and right limits of each discontinuity in 𝑐𝑡
(
𝛼𝑡−1, ·

)
.
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with a common history 𝛼𝑡−1, the following must hold a.e.:

E𝑡−1

{
𝛼𝑡

[
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 |𝛼𝑡−1)

]
− 𝜂𝑡

𝑢′ (𝑐𝑡 (𝛼𝑡 ))

����𝛼𝑡 > 𝛼 ′𝑡 } =
𝜋
(
𝛼 ′𝑡 |𝛼𝑡−1

)(
1 − Π

(
𝛼 ′𝑡 |𝛼𝑡−1

) ) · (𝛼 ′𝑡 )2 ·
{
𝜆Δ
𝑡+1

(
𝛼 ′𝑡
)
− 𝜌

(
𝛼 ′𝑡 |𝛼𝑡−1

)
𝜆Δ𝑡

}
(17)

E𝑡−1

{
𝛼𝑡

[
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜀𝛼 (𝛼𝑡−1)

]
− 𝜂𝑡

𝑢′ (𝑐𝑡 (𝛼𝑡 ))

}
= 0 (18)

where 𝜂𝑡 is the shadow value of resources for the planner, satisfying:

𝜂𝑡 = (𝛽𝑅)−𝑡 E [𝛼0]

E
[

1
𝑢′ (𝑐0 (𝛼0 ) )

] (19)

𝜆𝑡 and 𝜆Δ𝑡 are scalars measurable with respect to 𝛼𝑡−1, satisfy 𝜆0 = 𝜆Δ0 ≡ 0, and update according to:

𝜆𝑡+1 = 𝜆𝑡 + 𝜇𝑡
(
𝛼 ′𝑡
)

(20)

𝜆Δ
𝑡+1 = 𝜌

(
𝛼 ′𝑡 |𝛼𝑡−1

)
𝜆Δ𝑡 −

1 − Π
(
𝛼 ′𝑡 |𝛼𝑡−1

)
𝛼𝑡𝜋

(
𝛼 ′𝑡 |𝛼𝑡−1

) E𝑡−1
[
𝜇𝑡

(
𝛼 ′𝑡
) ��𝛼𝑡 > 𝛼 ′𝑡 ] (21)

with 𝜇𝑡
(
𝛼 ′𝑡
)

a mean-zero object defined in the appendix. The conditional distribution and densities are replaced

with their unconditional equivalents for period 0.

Expressions (17) and (18) are the main objects of interest here. (17) can be interpreted by reference

to the costs and benefits of changing information rents at a particular point in the cross-sectional type

distribution, for agents with a common history. This yields a direct welfare benefit, mitigated by the

direct marginal resource cost of the higher utility – which together account for the objects on the left-hand

side. Against this is the marginal cost of raising information rents at the threshold type, in order for (15)

to remain true. This is captured by the object on the right-hand side: note that 𝜆Δ
𝑡+1

(
𝛼 ′𝑡
)
− 𝜌

(
𝛼 ′𝑡 |𝛼𝑡−1

)
𝜆Δ𝑡 is

the shadow cost of raising 𝜔Δ
𝑡+1

(
𝛼 ′𝑡
)
, holding constant 𝜔Δ

𝑡 .

If instead utility is raised uniformly for all agents with a common history prior to t, then no within-

period change to information rents is required. The result is equation (18): the value of raising welfare

across types must equal the resource cost of doing so.

𝜆𝑡 and 𝜆Δ𝑡 in these expressions are multipliers deriving from prior incentive restrictions – capturing
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the shadow costs of changing 𝜔𝑡 and 𝜔Δ
𝑡 respectively. As highlighted by Marcet and Marimon (2019), the

Pareto weights that the policymaker attaches to different agents’ utility in 𝑡 are updated to accommodate

the shadow benefits of changes to incentives in prior periods.

5.2 The dynamics of consumption

A key element of the characterisation in Proposition 2 is the the inverse marginal utility of consumption

– equivalently, the marginal cost of providing 𝛼𝑡 units of utility to an agent in period 𝑡 . This is a widely-

studied object in dynamic incentive problems, where it is commonly used to assess the long-run proper-

ties of the consumption distribution.20 When shocks are iid, the inverse marginal utility is well-known

to follow a quasi-martingale process, with substantial implications for long-run inequality.21 There has

been significant recent debate about the sensitivity of this conclusion to type persistence.22 In this sub-

section I show, for the present model, that the dynamics of the inverse marginal utility of consumption

can be described by the interaction between two multiplier processes, one stationary, and one following

a martingale. In particular:

Proposition 3. For all 𝑡 and 𝑠, 𝑠 ≥ 𝑡 , and any history 𝛼𝑡 , the period-𝑡 expected value of the period-𝑠 inverse

marginal utility of consumption satisfies:

1
E𝑡 [𝛼𝑠]

E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠)

]
=

1 + 𝜆𝑡+1

𝜂𝑡
+

E𝑡

[
𝐷𝑡 ,𝑠 (𝛼𝑠) 𝛼𝑠

]
E𝑡 [𝛼𝑠]

𝜆Δ
𝑡+1

𝜂𝑡
(22)

According to the Proposition, the expected value of the marginal cost of utility provision evolves as

a composite of two multiplier processes. For long-run expectations, what matters is the object 1+𝜆𝑡+1
𝜂𝑡

–

the shadow value of raising lifetime utility for type 𝛼𝑡 , in periods after 𝑡 . This is the only component

that matters in the long run, because 𝜌 (𝛼𝑟 |𝛼𝑟−1) ∈ [0, 1), and so E𝑡 [𝐷𝑡 ,𝑠 (𝛼𝑠 )𝛼𝑠]
E𝑡 [𝛼𝑠 ] → 0 as 𝑠 → ∞.23 Since

𝜆𝑡+1 follows a martingale,24 the implication is that shocks to this martingale process control long-run

20In particular, Rogerson (1985) first highlighted the ‘inverse Euler equation’ as a dynamic optimality condition for the
marginal cost of utility provision in multi-period moral hazard settings, following its derivation in a two-period setting by
Diamond and Mirrlees (1978). Thomas and Worrall (1990) showed that this condition implied almost sure immiseration in the
long run, provided the discount factor is sufficiently small.

21This setting is explored in detail by Farhi and Werning (2007).
22See, for instance, Bloedel, Krishna and Strulovici (2020) and Bloedel, Krishna and Leukhina (2021).
23Recall that 𝐷𝑡 ,𝑠 (𝛼𝑠 ) :=

∏𝑠
𝑟=𝑡+1 𝜌 (𝛼𝑟 |𝛼𝑟−1), and 𝛼𝑠 is bounded.

24C.f. equation (20).
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consumption outcomes. Intuitively, given diminishing marginal utility it is cost-efficient to spread in-

centives over time. If there is justification for raising the utility of type 𝛼𝑡 from 𝑡 + 1 on, in return for

this type consuming relatively little in 𝑡 , then it is cost-effective to spread this increase across all future

periods.

These arguments are well understood from the existing social insurance literature. But when types

are persistent, there is an additional component to the short-run expected marginal cost, more in keeping

with the dynamic contracting literature in quasilinear settings.25 This comes from the desire to spread

over time the distortions to efficient choice that are needed in order to achieve desired values for the

information rents at any given 𝛼𝑡 . Type persistence implies that periods after 𝑡 matter for information

rents in 𝑡 .26 If it is desirable in 𝑡 to raise rents at 𝛼𝑡 (so 𝜆Δ
𝑡+1 > 0), then it will also be desirable to pay

some costs to achieve the same change in periods after 𝑡 . The exent to which this incentive fades over

time depends on the extent of persistence in the shock process, which controls how much outcomes in

period 𝑠 matter for information rents in 𝑡 . In this context, note that the object E𝑡 [𝐷𝑡 ,𝑠 (𝛼𝑠 )𝛼𝑠]
E𝑡 [𝛼𝑠 ] is precisely the

elasticity of E𝑡 [𝛼𝑠] with respect to 𝛼𝑡 .

The layering of a transitory shock component over the more conventional martingale for inverse

marginal utilities complicates the derivation and interpretation of long-run results relating to inequality,

but the main content of the immiseration conclusion endures. In particular, notice:

(1 + 𝜆𝑡+1)
𝜂𝑡

= lim
𝑠→∞

{
1

(𝛽𝑅)𝑠−𝑡
1

E𝑡 [𝛼𝑠]
E𝑡

[
1

𝑢′ (𝑐𝑠)

]}
≥ 0

Since 𝜂𝑡 > 0, from (19), it follows that (1 + 𝜆𝑡+1) is a bounded martingale. Thus it converges a.s. in 𝑡 . So

long as 𝑅 ≤ 𝛽−1, this will imply convergence to zero in the long-run expected inverse marginal utility. In

particular, note from (20) that convergence in 𝑡 to a constant, positive value for (1 + 𝜆𝑡+1) is only possible

if the allocation converges to an outcome with 𝜇𝑠 (𝛼𝑠) = 0 for all 𝛼𝑠 , 𝑠 ≥ 𝑡 . But since 𝜇𝑠 is the multiplier on

the relaxed incentive constraint, this implies convergence to a first-best allocation, maximising welfare

25See, for example, the discussion in Pavan (2017).
26Recall, from equation (15), that the information rent at type 𝛼𝑡 is given by:

1
𝛼𝑡

[
𝛼𝑡𝑢 (𝑐𝑡 (𝛼𝑡 )) + 𝛽𝜔Δ

𝑡+1 (𝛼𝑡 )
]

and 𝜔Δ
𝑡+1 (𝛼𝑡 ) is generically non-zero once types are persistent.
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on the resource constraint alone. This violates incentive compatibility. Thus for 𝑅 ≤ 𝛽−1, as 𝑡 becomes

large: {
lim
𝑠→∞

E𝑡

[
1

𝑢′ (𝑐𝑠)

]}
→
a.s.

0

That is, as time progresses the contemporaneous expectation of the long-run marginal cost of utility provision

converges almost surely to zero.

6 A consumption-savings decentralisation

6.1 Decentralised choice structure

I focus on a simple market decentralisation of the optimal direct allocation, making use of nonlinear

savings taxes. The market structure works as follows. Individuals enter generic period 𝑡 with a given

value of net wealth,𝑀𝑡 , which is normalised to remain positive along the equiulibrium path. This wealth

can either be allocated to period-𝑡 consumption, 𝑐𝑡 , or savings, 𝑠𝑡 . This choice is observable, and the

planner implements a non-linear tax on 𝑠𝑡 , which may vary over time, and in the history of past savings

decisions, 𝑠𝑡−1. This tax is denoted𝑇𝑡
(
𝑠𝑡 ; 𝑠𝑡−1) , or simply𝑇𝑡 (𝑠𝑡 ) if context allows, with𝑇 ′

𝑡

(
𝑠𝑡 ; 𝑠𝑡−1) or𝑇 ′

𝑡 (𝑠𝑡 )

to dente the corresponding marginal savings tax where it exists.

In 𝑡 + 1 the individual is allocated their residual post-tax savings, together with interest, as their new

wealth level. Choice then proceeds as before. The budget constraints can thus be written in sequential

form as:

𝑐𝑡 + 𝑠𝑡 = 𝑀𝑡 (23)

𝑀𝑡+1 = 𝑅

[
𝑠𝑡 −𝑇𝑡

(
𝑠𝑡 ; 𝑠𝑡−1

)]
(24)

Given 𝑀0, individuals choose contingent consumption sequences to maximise 𝑈0, subject to (23) and

(24), plus a ‘no Ponzi’ constraint, which must hold along all history paths:

lim
𝑇→∞

𝑅−𝑇𝑀𝑇 ≥ 0 (25)

As discussed in Appendix A.5, conditions (23) to (25) together imply a forward-looking multi-period
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budget constraint that must be satisfied by all realised consumption-savings paths from generic period

𝑡 onwards:

𝑀𝑡 =

∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟
[
𝑐𝑟 +𝑇𝑟

(
𝑠𝑟 ; 𝑠𝑟−1

)]
(26)

Different realisations of individuals’ type draws over time will give rise to different optimal consumption-

savings paths. Where required I denote by 𝑠∗𝑡
(
𝛼𝑡 ; 𝑠𝑡−1) the optimal level of savings in the decentralisation

for an individual whose current type is 𝛼𝑡 and whose past savings history is given by 𝑠𝑡−1.27

6.2 Normalising taxes

Consistent with the usual Barro-Ricardian equivalence result, by changing the timing of taxation it is

generally possible to construct multiple tax systems that deliver the same market allocation. Hence a

degree of normalisation is necessary. I focus on a normalisation with two properties. The first is that the

fiscal consequences of marginal savings decisions are fully capitalised upfront. That is, changes in an

individual’s current savings may give rise to changes in their current tax bill, but they leave unaffected

their expected future tax liabilities. The second normalisation is to set to zero the expected future tax

liabilities of an agent whose current type takes the maximum value, 𝛼 .

Mathematically, these restrictions are easiest to express by defining the expected lifetime tax liability

from 𝑡 + 1 on for an individual whose period-𝑡 type is 𝛼𝑡 , and who saves an amount 𝑠𝑡 :

T𝑡+1

(
𝑠𝑡 ,𝛼𝑡 ; 𝑠𝑡−1

)
= E𝑡

[ ∞∑︁
𝑟=𝑡+1

𝑅𝑡+1−𝑟𝑇𝑟
(
𝑠𝑟 ; 𝑠𝑡−1, 𝑠𝑡 , 𝑠𝑟−1

𝑡+1

)����� 𝑠𝑡−1,𝛼𝑡

]
(27)

where expectations are taken with respect to future type draws, given the optimal savings choices that

they induce.

If 𝑠∗𝑡
(
𝛼𝑡 ; 𝑠𝑡−1) denotes optimal savings for type 𝛼𝑡 given history 𝑠𝑡−1, the first normalisation is to set:

T𝑡+1

(
𝑠∗𝑡

(
𝛼 ′𝑡 ; 𝑠

𝑡−1
)

,𝛼 ′𝑡 ; 𝑠
𝑡−1

)
=T𝑡+1

(
𝑠∗𝑡

(
𝛼 ; 𝑠𝑡−1

)
,𝛼 ; 𝑠𝑡−1

)
(28)

−
∫ 𝛼̄

𝛼 ′
𝑡

𝜕T𝑡+1
(
𝑠∗𝑡

(
𝛼𝑡 ; 𝑠𝑡−1) ,𝛼𝑡 ; 𝑠𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

27This discussion implicitly assumes a unique such optimum. The formal treatment in the appendix does not.

24



That is, variations in 𝛼𝑡 change expected future taxes only insofar as they affect expectations across future

type histories. There is no marginal effect from a change in period-𝑡 savings, 𝑠∗𝑡
(
𝛼𝑡 ; 𝑠𝑡−1) . This is useful

for the results that follow, because it means the impact of an individual’s marginal saving decision on

public finances can be fully summarised by its impact on contemporaneous tax revenue.

The second normalisation is to set:

T𝑡+1

(
𝑠∗𝑡

(
𝛼 ; 𝑠𝑡−1

)
,𝛼 ; 𝑠𝑡−1

)
= 0 (29)

The agent whose current type is highest – and so will be saving the least in equilibrium – faces an

expected lifetime tax bill of zero from period 𝑡 + 1 onwards. This normalisation ensures that there is

always one period-𝑡 type, 𝛼 , whose post-tax wealth in 𝑡 is equal to the period-𝑡 expectation of their

lifetime consumption from 𝑡 + 1 on.

6.3 Tax revenues: an ‘impulse response’ result

Equation (28) implies an intuitive link between variations in an individual’s current type, and changes

in their expected lifetime tax payments. Specifically:

Lemma 2. Suppose condition (28) holds. For any 𝑠𝑡−1 and 𝛼𝑡 ∈ 𝐴 with the property that 𝑑
𝑑𝛼𝑡

[
𝑇
(
𝑠∗𝑡 (𝛼𝑡 ) ; 𝑠𝑡−1) ]

exists, expected future tax liabilities react to current type as follows:

𝛼𝑡
𝑑

𝑑𝛼𝑡

{
E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟 (𝑠𝑟 )
����� 𝑠𝑡−1,𝛼𝑡

]}
= E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝐷𝑡 ,𝑟 (𝛼𝑟 ) 𝛼𝑟
𝑑

𝑑𝛼𝑟

{
𝑇𝑟

(
𝑠∗𝑟 (𝛼𝑟 )

)}����� 𝑠𝑡−1,𝛼𝑡

]
(30)

If, in addition, 𝑇𝑟 (·) is absolutely continuous in 𝑠𝑟 and 𝑠∗𝑟 (·) absolutely continuous in 𝛼𝑟 for 𝑟 ≥ 𝑡 , this can be

written as:

𝛼𝑡
𝑑

𝑑𝛼𝑡

{
E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟 (𝑠𝑟 )
����� 𝑠𝑡−1,𝛼𝑡

]}
= E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝐷𝑡 ,𝑟 (𝛼𝑟 ) 𝛼𝑟
𝑑𝑠∗𝑟 (𝛼𝑟 )
𝑑𝛼𝑟

𝑇 ′
𝑟

(
𝑠∗𝑟 (𝛼𝑟 )

) ����� 𝑠𝑡−1,𝛼𝑡

]
(31)

Thus the effect on lifetime tax payments of a marginal increase in an individual’s current type can

be expressed a discounted sum of the revenue effects marginal changes in type at all future horizons,

discounted by the rate of persistence in the shock process (the 𝐷𝑡 ,𝑟 (𝛼𝑟 ) term).

25



In the terminology of Pavan, Segal and Toikka (2014), what matters for lifetime tax payments is the

impulse response of the shock, captured by 𝐷𝑡 ,𝑟 (𝛼𝑟 ). When types are iid over time, 𝐷𝑡 ,𝑟 (𝛼𝑟 ) = 0 for 𝑟 > 𝑡 :

a shock to current type has no persistence. The only effect of a change in 𝛼𝑡 is to change period-𝑡 savings,

and the associated level of taxation.28 Expected future savings are left unaffected, just as they would be

if the same behavioural change in period-𝑡 savings were engineered for a given, invariant type.

When type is persistent, however, a change in true type in 𝑡 shifts expectations of future type, in a

way that necessarily changes the expected level of future taxes. This drives a wedge between the effect

on expected lifetime taxes of a change in true period-𝑡 type, and the effect of the associated change in

period-𝑡 savings in isolation – holding type constant.

6.4 Feasibility of decentralisation

Proposition 4 provides conditions under which an incentive-feasible allocation can be decentralised by

a tax scheme of this kind.

Proposition 4. An incentive-feasible allocation
{
𝑐∗𝑡

(
𝛼𝑡
)}

𝑡 ,𝛼𝑡 can be decentralised by a sequence of tax functions

𝑇𝑡
(
𝑠𝑡 ; 𝑠𝑡−1) that satisfy (28) and (29), provided the allocation is normal.

Like its use in validating the first-order approach, the restriction to normal allocations is sufficient for

the decentralisation to be possible, but not necessary. Its main role is to allow a link between the value of

individuals’ wealth in the decentralisation, and the net-present value of their expected future consump-

tion. If future consumption were increasing in current type 𝛼𝑡 along some nodes, it becomes possible

that multiple current type reports could imply the same net-present value for future consumption, at

least for some future type distributions. This makes it more complicated to assign each type report to a

unique level of future wealth, and vice-versa.

It is easy to amend the proof to allow weaker restrictions.29 The advantage of normality is that it

is an ordinal restriction on the allocation, independent of the assumed type process or utility functions.

In this way it is consistent with the general focus in this paper on minimising analytical reference to the

28Recall that I normalise 𝐷𝑡 ,𝑡
(
𝛼𝑡

)
to 1.

29The proof goes through without amendment so long as the net-present value of future consumption is monotone decreasing
in 𝛼𝑡 for all period-𝑡 types. This is a much weaker restriction than decreasingness at almost all future nodes, but at the cost of a
reference to the type distribution.
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two key unobservables that dominate the mechanism design approach – the utility function and the type

process.

7 Sufficient statistics: preliminaries

A central contribution of the present paper is to provide a direct characterisation of the optimal marginal

tax rate, 𝑇 ′
𝑡 (𝑠𝑡 ), by reference to behavioural elasticities and other observable objects, such as the condi-

tional savings distribution, that arise in the decentralisation. This section defines the relevant statistics,

and provides intermediate steps in order to map from a utility-based to a sufficient statistics representa-

tion of the optimum.

7.1 Towards sufficient statistics: intuition and integration

Equation (17) states that the net benefits from raising the utility of high-type agents must be traded off

against the costs of changing information rents in a compatible manner. But the practical value of the

characterisation is weakened by the fact that its key components – the marginal costs of unit changes

to utility and to information rents – are defined by reference to the utility function and the unobserved

type process. These do not map easily to observables, and – in the case of utility – are only defined up to

a large class of renormalisations. It would be preferable to characterise, as far as possible, by reference

to measurable objects: behavioural elasticities and observable distributions.

I achieve this by use of a novel, intuitive analytical step, as follows. Sufficient statistics characteri-

sations in static nonlinear tax problems typically describe the costs and benefits at the margin of simple

step changes in the cross-sectional profile of effective income, or wealth in the population. For example, a

cut in the marginal tax rate at a certain point in the earnings (or savings) distribution raises the effective

income of all types above this point, by a uniform amount.30 By considering the resulting behavioural

responses – a combination of standard income and substitution effects – one can arrive at an expression

for the net fiscal cost of the tax cut, to be contrasted with its welfare benefits.

Proposition 2 also describes the costs and benefits of a simple step change, but in the cross-sectional

profile of utilities rather than incomes. As already discussed, its key components are marginal costs and

30The discussion in Piketty and Saez (2013b) provides detailed treatment.
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benefits ‘per unit change in utility’, as a result of marginal changes to information rents. But this does

not prevent it from being used to discuss income changes – it just means that a conversion is needed.

For any given profile of income changes, there will always be a corresponding profile of utility changes.

An understanding of the former can be achieved by starting from the latter.

More substantively, a unit marginal increase in the feasible period-𝑡 consumption level for an agent

of type 𝛼𝑡 raises their utility by 𝛼𝑡𝑢′ (𝑐𝑡 (𝛼𝑡 )) at the margin. So long as the envelope condition applies, this

will be true whether the additional resources are fully used on period-𝑡 consumption, or are partly saved.

To analyse the effects of changing effective incomes by a uniform amount below some threshold type, it

is sufficient to analyse the effects of changing utility by 𝛼𝑡𝑢′ (𝑐𝑡 (𝛼𝑡 )) units for all agents in this range. By

integrating equations (17) and (18) in appropriate proportions, this is a straightforward exercise.

To this end, I obtain the following as a corollary to Proposition 2:

Corollary 2. If a strictly normal allocation is optimal in the relaxed problem, with 𝑐𝑡 (𝛼𝑡 ) continuous at a given

history node, then the following two expressions are true:

∫ 𝑐

𝑐

[
1 −

𝛼𝑡 (𝑐) 𝑢′ (𝑐)
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐 |𝛼𝑡−1

)
𝑑𝑐 (32)

+
∫ 𝑐

𝑐

(𝛼𝑡 (𝑐))2𝑢′′ (𝑐)
{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡

} (
𝑑𝛼𝑡 (𝑐)
𝑑𝑐

)−1

𝜋𝑐
(
𝑐 |𝛼𝑡−1

)
𝑑𝑐

=0

−
∫ 𝑐′

𝑐

[
1 −

𝛼𝑡 (𝑐) 𝑢′ (𝑐)
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐 |𝛼𝑡−1

)
𝑑𝑐 (33)

−
∫ 𝑐′

𝑐

(𝛼𝑡 (𝑐))2𝑢′′ (𝑐)
{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

} (
𝑑𝛼𝑡 (𝑐)
𝑑𝑐

)−1

𝜋𝑐
(
𝑐 |𝛼𝑡−1

)
𝑑𝑐

+ (𝛼𝑡 (𝑐′))2
𝑢′ (𝑐′)

(
𝑑𝛼𝑡 (𝑐)
𝑑𝑐

)−1

𝜋𝑐
(
𝑐′ |𝛼𝑡−1

) {𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐

′))
𝜂𝑡

− 𝜌 (𝛼𝑡 (𝑐′) |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

}
=0

28



the latter for almost all 𝑐′ ∈
(
𝑐, 𝑐

)
, with 𝑐 = 𝑐𝑡

(
𝛼
)

and 𝑐 = 𝑐𝑡 (𝛼), and 𝜋𝑐
(
𝑐𝑡 |𝛼𝑡−1) denoting the realised density of

consumption in 𝑡 , given history 𝛼𝑡−1.

The restriction to continuous 𝑐𝑡 (𝛼𝑡 ) functions is made for convenience only: the appendix shows

that it is possible to incorporate jumps in consumption as type increases. Note also that the realised

consumption density will equal the realised savings density, denoted 𝜋𝑠
(
𝑠𝑡 |𝛼𝑡−1) , since:

Π𝑐
(
𝑐′𝑡 |𝛼𝑡−1

)
≡ 𝑃

(
𝑐𝑡 ≤ 𝑐′𝑡

)
= 𝑃

(
𝑠𝑡 ≥ 𝑠′𝑡

)
≡ 1 − Π𝑠

(
𝑠′𝑡 |𝛼𝑡−1

)
where 𝑠′𝑡 := 𝑀𝑡

(
𝛼𝑡−1) − 𝑐′𝑡 , so 𝑑𝑠𝑡

𝑑𝑐𝑡
= −1.

7.2 Relevant behavioural statistics

By themselves, conditions (32) and (33) appear just to be slightly more unweildy alternatives to (17) and

(18). But their value is that their components correspond to meaningful behavioural statistics. To this

end, the four relevant behavioural statistics are defined in turn here.

The contemporaneous elasticity of savings with respect to the post-tax rate of return: This is denoted

𝜀𝑠𝑡 . For an agent whose chosen savings level is 𝑠𝑡 , it is defined as the response to a change in the local

marginal tax rate that they face:

𝜀𝑠𝑡 :=
𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)

𝑠𝑡

𝑑𝑠𝑡

𝑑𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)

As for the other statistics, this value is not ‘structural’. It will be endogenous to the chosen allocation,

and associated tax schedule. It is a compensated elasticity, since the the total tax liability at 𝑠𝑡 , 𝑇𝑡 (𝑠𝑡 ),

remains unchanged to first order when the marginal tax rate, 𝑇 ′
𝑡 (𝑠𝑡 ), changes.

The contemporaneous income effect on savings: This is denoted 𝑑𝑠𝑡
𝑑𝑀𝑡

. For a given period-𝑡 type with

a given history of savings, it is the effect on 𝑠𝑡 of a marginal increase in 𝑀𝑡 , holding constant current

and future tax schedules. Like 𝜀𝑠𝑡 , the value of this statistic will be endogenous to properties of the tax

schedule itself. For instance„ individuals who locate in regions where the marginal tax rate is increasing
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rapidly are less likely to increase their savings in response to higher wealth, relative to their behaviour

in a linear setting.

The compensated elasticity of lagged savings, with respect to contemporary returns: This object cap-

tures the complementarities that may exist in economies with incomplete insurance, between the state-

contingent profile of returns provided by a savings instrument, and the level of saving itself. Denoted

𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ), it measures the response of savings in 𝑡 − 1 to the change in the profile of insurance at 𝑡 that

is generated by a cut in the marginal savings tax rate in the interval (𝑠𝑡 , 𝑠𝑡 + Δ), taking the limit as Δ

becomes small. To abstract from mechanical effects, this is normalised by (a) the relative proportion of

agents in 𝑡 who benefit from the tax cut,
(
1 − Π𝑠

(
𝑠𝑡 |𝛼𝑡−1) ) , where Π𝑠

(
𝑠𝑡 |𝛼𝑡−1) denotes the relevant condi-

tional distribution of savings in 𝑡 , and (b) the size of the interval on which taxes are cut, denoted 𝑑𝑠𝑡 at

the limit. Thus, heuristically:31

𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 )

(
1 − Π𝑠

(
𝑠𝑡 |𝛼𝑡−1

))
𝑑𝑠𝑡 :=

(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)

𝑠𝑡−1

𝑑𝑠𝑡−1

𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ����

comp
(34)

𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) is a compensated elasticity, viewed from the perspective of 𝑡 − 1. It is calculated assuming a

uniform compensating adjustment to lifetime utility across period-𝑡 states, so that an agent with realised

history 𝛼𝑡−1 does not experience any change to their continuation value, 𝜔𝑡

(
𝛼𝑡−1) . Thus the behavioural

change in 𝑡 − 1 that it captures is purely due to the re-profiling of state-by-state utility outcomes in 𝑡 , and

not to a first-order change in the utility value of a given quantity of savings.

How and why savings at 𝑡 − 1 should respond to a re-profiling of insurance in 𝑡 is discussed in more

detail later. Ultimately the sign and magnitude of 𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) will capture important links between tax

cuts, insurance and savings. This can provide a force for additional insurance when types are persistent.

The compensated effect of transfers on lagged savings: Just as the insurance effects of a marginal

savings tax cut in 𝑡 may change savings in 𝑡 − 1, so too could the insurance effects of a change in the

lump-sum component of taxes. Suppose 𝑠 is the lowest realised savings level in period 𝑡 after some

history, and consider a marginal reduction in 𝑇𝑡
(
𝑠
)
, holding constant the profile of marginal tax rates at

31The formal definition of 𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) is complicated by the fact that marginal tax changes at a single point in period 𝑡 have

‘small’ (zero measure) effects on the incentives to save in 𝑡 − 1. It is given in the appendix.
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higher savings. This tax cut will shift consumption possibilities in 𝑡 , by an equal amount for all types.

The marginal effect on utility for type 𝛼𝑡 will be 𝛼𝑡𝑢′ (𝑐𝑡 (𝛼𝑡 )), and in general this will vary in 𝛼𝑡 . This

implies that the change in the lump-sum component will induce a marginal reprofiling of utility across

type draws. Once again, I consider the compensated effect of this reprofiling, given a uniform adjustment

to utility across period-𝑡 states that leaves 𝜔𝑡

(
𝛼𝑡−1) constant.

Since a change in the lump-sum component of taxes is equivalent to a change in 𝑀𝑡 , I denote the

compensated effect of higher period-𝑡 income on 𝑡 − 1 savings by:

𝑑𝑠𝑡−1

𝑑𝑀𝑡

����
comp

7.3 Equivalence results

Making use of these definitions, the following Lemma provides the ingredients to link from expressions

(32) and (33) to a sufficient statistics representation:

Lemma 3. The following relationships hold:

1. [Contemporaneous savings elasticity]

𝑇 ′
𝑡 (𝑠𝑡 ) 𝑠𝑡𝜀𝑠𝑡 =

𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
(𝛼𝑡 (𝑐𝑡 ))2𝑢′ (𝑐𝑡 )

(
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1

(35)

2. [Contemporaneous income effect]

𝑇 ′
𝑡 (𝑠𝑡 )

𝑑𝑠𝑡

𝑑𝑀𝑡

= −
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
(𝛼𝑡 (𝑐𝑡 ))2𝑢′′ (𝑐𝑡 )

(
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1

(36)

3. [Intertemporal effect of tax cut]

𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1𝜖

𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
= − 𝜌

(
𝛼𝑡

(
𝑐′𝑡
)
|𝛼𝑡−1

)
𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

(
𝛼𝑡

(
𝑐′𝑡
) )2

𝑢′
(
𝑐′𝑡
) (𝑑𝛼𝑡 (𝑐′𝑡 )

𝑑𝑐𝑡

)−1
𝜋𝑐

(
𝑐′𝑡 |𝛼𝑡−1)

Π𝑐
(
𝑐′𝑡 |𝛼𝑡−1

)
+ 1
Π𝑐

(
𝑐′𝑡 |𝛼𝑡−1

) ∫ 𝑐′𝑡

𝑐

{
𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1
𝛼𝑡 (𝑐𝑡 ) (𝑢′ (𝑐𝑡 )) (37)

×
[
1 + 𝑐𝑡𝑢

′′ (𝑐𝑡 )
𝑢′ (𝑐𝑡 )

(
𝑐𝑡

𝛼𝑡 (𝑐𝑡 )
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1
]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)}
𝑑𝑐𝑡
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4. [Intertemporal income effect]

𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1)

𝑑𝑠𝑡−1

𝑑𝑀𝑡

����
comp

=

∫ 𝑐

𝑐

{
𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1
𝛼𝑡 (𝑐𝑡 ) (𝑢′ (𝑐𝑡 )) (38)

×
[
1 + 𝑐𝑡𝑢

′′ (𝑐𝑡 )
𝑢′ (𝑐𝑡 )

(
𝑐𝑡

𝛼𝑡 (𝑐𝑡 )
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1
]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)}
𝑑𝑐𝑡

The proof of these relationships, in the Appendix, is algebraically involved but based on elementary

manipulations. It exploits two important features of the problem. The first is the duality between welfare

maximisation and cost minimisation when designing policy. This enables the multipliers 𝜆Δ𝑡 and 𝜆𝑡 to be

linked to the marginal cost for the policymaker of allowing additional savings at the margin. This, in

turn, allows an expression for the marginal tax revenue that is raised per unit of savings.

The second feature that I exploit is the separability of consumption utility over time. This limits the

dependence of contemporaneous choice on decisions in other periods, and guarantees the existence of

relatively simple cross-relationships between different behavioural statistics.

7.4 Welfare weights

In keeping with the static literature, I will make use of ‘social welfare weights’ to capture the marginal

value to the policymaker of providing an extra unit of income to each type, expressed in units of current

resources. Ror each history 𝛼𝑡 and current consumption level 𝑐𝑡 , these are defined by:32

𝑔𝑡
(
𝛼𝑡
)

:= 𝛼𝑡𝑢′
(
𝑐𝑡

(
𝛼𝑡
) ) 1 + 𝜆𝑡

(
𝛼𝑡−1)

𝜂𝑡
(39)

That is, the subjective marginal utility of consumption, 𝛼𝑡𝑢′ (𝑐𝑡 ), multiplied by a term
(
1 + 𝜆𝑡

(
𝛼𝑡−1) ) > 0

that captures the contemporaneous value to the policymaker of providing resources to the cross-section

of types with history 𝛼𝑡−1, and divided by 𝜂𝑡 – the shadow utility value of period-𝑡 resources.

Economically, the most interesting component of the welfare weight is the object 𝜆𝑡
(
𝛼𝑡−1) . This

updates period-by period in response to the shocks that agents receive, with mean-zero innovations:

E
[
𝜆𝑡+1 |𝛼𝑡−1] = 𝜆𝑡 .33 In the decentralised allocation, the updating process will capture the wealth that

32Where the mapping between 𝛼𝑡 and 𝑠𝑡 is bijective, I write 𝑔𝑡 (𝑠𝑡 ) in place of 𝑔𝑡
(
𝛼𝑡

)
, leaving history implicit.

33See Proposition 2.
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agents accumulate along each history branch. Higher values for 𝜆𝑡 correspond to higher past savings,

and therefore a higher implicit weight in period-𝑡 welfare calculations. Cross-sectionally, this is equiva-

lent to placing a higher Pareto weight on those who have accumulated a large amount of wealth, relative

to those who have not.34

The link between Pareto weights and wealth in a decentralised market economy has been under-

stood at least since Negishi (1960). The interesting feature of the present context is the fact that the

evolution of the wealth distribution over time can be identified with changes in the effective welfare ob-

jective of the policymaker. A policymaker in the initial period may seek a radical utilitarian allocation,

unconstrained by any initial profile of asset ownership. But as time progresses, respect for the evolving

pattern of wealth is a necessary counterpart to respect for past incentive constraints. An optimal plan

remains cross-sectionally utilitarian, for any subset of individuals who share a common history. Across

subgroups, however, substantial differentiation in treatment will emerge.

The time inconsistency here is evident, and provides a challenge to the plausibility of the commit-

ment assumption.35 What if a new government would like to redistribute wealth?

8 Sufficient statistics characterisation

8.1 Characterisation

Corollary 2 and Lemma 3 together deliver the main ‘sufficient statistics’ characterisation result:

Theorem 1. If a strictly normal allocation is optimal in the relaxed problem, with 𝑐𝑡 (𝛼𝑡 ) continuous for any given

𝛼𝑡−1, then at 𝑡 = 0, for almost all realised savings levels 𝑠′0:

E

[
1 −𝑇 ′

0 (𝑠0)
𝑑𝑠0

𝑑𝑀0
−𝑔0 (𝑠0)

���� 𝑠0 ≥ 𝑠′0
]
= 𝑇 ′

0
(
𝑠′0
)
𝜀𝑠0

𝑠′0𝜋
𝑠
(
𝑠′0

)
1 − Π𝑠

(
𝑠′0

) (40)

34Formally, the proof of Theorem 2 establishes that 𝜆𝑡 is decreasing in 𝛼𝑡−1, for agents with a common history 𝛼𝑡−2. Since
higher 𝛼𝑡−1 corresponds to higher consumption in 𝑡 − 1, there is a monotone link from savings to Pareto weights.

35Brendon and Ellison (2018) propose an alternative solution concept under commitment that delivers stationarity in the
Pareto weights.
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and:

E [𝑔0 (𝑠0)] = E

[
1 −𝑇 ′

0 (𝑠0)
𝑑𝑠0

𝑑𝑀0

]
(41)

Similarly, for 𝑡 > 0, any given 𝛼𝑡−1, and almost all realised 𝑠′𝑡 :

E𝑡−1

[
1 −𝑇 ′

𝑡 (𝑠𝑡 )
𝑑𝑠𝑡

𝑑𝑀𝑡

−𝑔𝑡 (𝑠𝑡 )
���� 𝑠𝑡 ≥ 𝑠′𝑡 ] = 𝑇 ′

𝑡

(
𝑠′𝑡
)
𝜀𝑠𝑡

𝑠′𝑡𝜋
𝑠
(
𝑠′𝑡 |𝛼𝑡−1)

1 − Π𝑠
(
𝑠′𝑡 |𝛼𝑡−1

) + 𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1𝜖

𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)

(42)

and:

E𝑡−1 [𝑔𝑡 (𝑠𝑡 )] = 1 − E𝑡−1

[
𝑇 ′
𝑡 (𝑠𝑡 )

𝑑𝑠𝑡

𝑑𝑀𝑡

]
− 𝑅𝑇 ′

𝑡−1 (𝑠𝑡−1)
𝑑𝑠𝑡−1

𝑑𝑀𝑡

����
comp

(43)

.

Proof. Follows from direct substitution of the expressions in Lemma 3 into the conditions in Corollary 2,

applying the definition of the social welfare weights. □

8.2 Intuition

As previewed, equations (40) to (43) can be understood intuitively by reference to simple changes in

the intertemporal budget constraint that links consumption in one period to income in the next. For

(40) and (42), the relevant exercise is a cut in the marginal tax rate at some particular savings level. As

Figure 1 illustrates, the result is a rightwards shift in the budget constraint for all savings levels above

the threshold. For conditions (41) and (43), the relevant exercise is a rightwards shift in the entire budget

constraint, as the lump-sum component of the tax schedule is made more generous.

Condition (40) assesses the effects of the tax cut in Figure 1, when applied in the initial time period.

Heuristically, the effects can be divided into those above 𝑠′0, and those at 𝑠′0. For those above 𝑠′0, the tax cut

serves to shift out the within-period budget constraint by a uniform amount, and the left-hand side of

(40) accounts for this from the policymaker’s perspective. There are three components: (1) the direct cost

of the transfer, normalised to 1 per agent by construction, minus (2) the additional tax revenue that is

received on whatever fraction of the additional income is saved, 𝑇 ′
0 (𝑠0) 𝑑𝑠0

𝑑𝑀0
, minus (3) the social welfare

value of providing an additional consumption unit, 𝑔0 (𝑠0). Taken together, these objects give the net

fiscal cost of the transfer that high-saving agents receive.
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Figure 1: Effects on the budget constraint of a marginal savings tax cut at 𝑠′𝑡

The right-hand side of (40) relates to agents locating at 𝑠′0. A higher post-tax rate of return – i.e.,

a lower savings tax rate – will induce these agents to substitute towards savings in proportion to the

savings elasticity. So long as the marginal savings tax rate is positive, this is desirable to the policymaker:

it generates higher tax revenue. This is captured by the object 𝑇 ′
0

(
𝑠′0

)
𝑠′0𝜀

𝑠
0, interacted with the density of

savers affected.

Condition (42) is the equivalent to (40) for 𝑡 > 0. Relative to the period-0 version, it has an extra

term that allows for the impact that changes to tax schedules in 𝑡 have on savings in 𝑡 − 1. This is the

object 𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1𝜖𝑡−1,𝑡

(
𝑠′𝑡
)
, with the real interest rate 𝑅 reflecting the value of resources raised in 𝑡 − 1

relative to 𝑡 . Clearly this term depends critically on the sign and magnitude of the (compensated) cross-

elasticity 𝜖𝑡−1,𝑡
(
𝑠′𝑡
)
: do tax cuts at 𝑠′𝑡 incentivise or deter savings at 𝑡 − 1, and by how much? This will be

discussed in detail in Section 10.

The striking feature of Theorem 1 is what is not in it. Despite the infinite-horizon, stochastic set-

ting, just two behavioural adjustment margins matter for optimal taxes: the contemporaneous effect
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on savings, and the effect on savings one period back. This is an extremely helpful simplification. It

speaks positively for the practical applicability of dynamic Mirrleesian tax analysis – a feature that is not

generally considered its main strength.

Conditions (41) and (43) describe the consequences of shifting the entire budget constraint, rather

than just an upper segment. They are essentially variants of (40) and (42) respectively, absent contempo-

raneous substitution effects – and when the relevant intertemporal behavioural effect is 𝑑𝑠𝑡−1
𝑑𝑀𝑡

���
comp

rather

than 𝜖𝑡−1,𝑡
(
𝑠′𝑡
)
. The expressions can be read as optimal solutions for the lump-sum component of the

social insurance system, discussed in more detail in the next section.

9 Properties of optimal taxes

9.1 Positive marginal rates at interior points

The characterisation can be used to analyse the qualitative properties of an optimal savings tax schedule

in the decentralised allocation. The most general result is the following:

Theorem 2. Suppose the optimal allocation is strictly normal. Then for all time periods and shock histories,

marginal savings taxes are strictly positive at all interior points in the type distribution.

This provides a very direct qualitative description of the optimal social insurance scheme. Recall

from Section 6 that the average value of 𝑇𝑡 (𝑠𝑡 ) is constructed to be zero, given the history 𝑠𝑡−1. Since the

marginal rate is positive, an optimal social insurance scheme must therefore provide a positive transfer

(negative 𝑇 ) at the lowest savings level, which is then taxed away as savings increase.

Intuitively, this is consistent with the basic problem that the social insurance scheme seeks to address:

how to distribute income to those with a high consumption need in period 𝑡 , given that need is unob-

servable? The solution is to exploit the relative preference of high-need consumers for current rather

than future consumption. A universal transfer is made available to all, financed by those who choose to

save. The act of saving signals low consumption need, and thus attracts a high net fiscal contribution.

Optimal policy faces the familiar trade-off between redistributing towards those given preference by the

social (and ex-ante individual) welfare criterion – revealed by their low savings – and the distortion of

savings decisions that is implied by this.
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9.2 Limiting outcomes

The general finding of strictly positive marginal savings tax rates need not extend to endpoints of the

type distribution, where limiting rates may instead reach zero. As in the static labour income tax liter-

ature, a critical role is played by the limiting properties of the distribution and density of savings. Zero

tax results generally follow if the density remains positive at endpoints, or converges to zero ‘slowly’ by

comparison with the remaining probability mass in the upper tail. When this is true, the local efficiency

costs of taxation become large relative to any redistributive benefit. These properties may be inher-

ited from primitive assumptions on the type distribution – for instance, it is straightforward to show

that zero marginal taxes are optimal at endopints if the conditional type density 𝜋 (·|·) is everywhere

bounded above zero.36

More generally, for optimal top marginal tax rates the Pareto statistic for savings provides the rele-

vant weighting between efficiency redistributive effects. I denote this 𝑎𝑡
(
𝑠𝑡 |𝛼𝑡−1) :

𝑎𝑡

(
𝑠𝑡 |𝛼𝑡−1

)
:=

𝑠𝑡𝜋
𝑠
(
𝑠𝑡 |𝛼𝑡−1)

1 − Π𝑠
(
𝑠𝑡 |𝛼𝑡−1

)
If 𝜋𝑠

(
𝑠 |𝛼𝑡−1) > 0, where 𝑠 is the conditional upper bound for savings, then lim𝑠𝑡→𝑠

[
𝑎𝑡

(
𝑠𝑡 |𝛼𝑡−1) ] = ∞. This

is true when 𝜋
(
𝛼 |𝛼𝑡−1

)
> 0. More generally, however, it is quite possible for lim𝑠𝑡→𝑠

[
𝑎𝑡

(
𝑠𝑡 |𝛼𝑡−1) ] < ∞.

The primitive assumptions admit either of these outcomes.

As a direct corollary of Theorem 1, I can write an expression for the optimal marginal tax rate at the

top of the savings distribution:

Corollary 3. Given 𝛼𝑡−1, the optimal marginal tax rate at the upper limit of the savings distribution, 𝑠, satisfies:

𝑇 ′
𝑡 (𝑠) =

1 −𝑔𝑡 (𝑠) − 𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1

𝑠
𝜖𝑠
𝑡−1,𝑡 (𝑠) 𝑎𝑡

(
𝑠 |𝛼𝑡−1)

𝑑𝑠𝑡
𝑑𝑀𝑡

���
𝑠
+ 𝜀𝑠𝑡𝑎𝑡

(
𝑠 |𝛼𝑡−1

) (44)

In keeping with the static literature on optimal tax design, it is possible to use this equation to obtain

approximate figures for upper marginal tax rates, given a shock history. Section 11 provides an indicative

exercise to this end.
36This follows from equation (75) in the appendix, and the fact that𝑇 ′

𝑡 (𝑠𝑡 (𝛼𝑡 )) = 0 when 𝜆Δ
𝑡+1 (𝛼𝑡 ) = 0 – a result established in

the proof of Theorem 2.
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9.3 Optimal transfers

Conditions (41) and (43) describe the optimal determination of the lump-sum component to the tax

system after each history. In the initial period, this is a straightforward trade-off between the welfare

benefits of transferring an extra unit of income across all agents, captured by E [𝑔0 (𝑠0)], and the net cost

of doing so, E
[
1 −𝑇 ′ (𝑠0) 𝑑𝑠0

𝑑𝑀0

]
. So long as contemporaneous income effects on savings are positive, it

is optimal to increase transfers even beyond the level where the average welfare weight is unity – the

usual benchmark in the labour supply literature with quasilinear preferences – because the net cost of

the transfer is mitigated by tax revenue on the additional savings it induces.

Outcomes in periods after 0 are additionally influenced by the complementarity of insurance and

past savings. A compensated increase in the lump-sum component of the tax system in period 𝑡 raises

the insurance value of savings, since the marginal utility of this additional income is increasing in 𝛼𝑡 .

With type persistence, this raises savings at the margin in 𝑡 − 1 – for reasons discussed in Section 10

below. This implies it is optimal to set transfers above the value that equates the average welfare weight

in period 𝑡 with the within-period net cost of the transfer:

E𝑡−1 [𝑔𝑡 (𝑠𝑡 )] < E𝑡−1

[
1 −𝑇 ′ (𝑠𝑡 )

𝑑𝑠𝑡

𝑑𝑀𝑡

]
(45)

The general message is that type persistence motivates a more generous insurance scheme, because

insurance acts as a complement to past savings. The reasons for this are explored in more detail in the

next Section.

10 Limited intertemporal elasticities: Atkinson-Stiglitz revisited

10.1 Insurance incentivises prior saving

The most significant theoretical insight from Theorem 1 is the limited extent to which the conventional

Saez (2001) condition needs to change when moving from a simple two-good screening problem to an

infinite-horizon, persistent-type setting. Indeed, the only statistic preventing the within-period charac-

terisation from being isomorphic to a textbook Saez formula is the elasticity of lagged savings, 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
.
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The purpose of this Section is to discuss its role, and relate it to more familiar intuition.

So long as marginal savings taxes are positive in period 𝑡 − 1, the marginal social value of additional

savings in that period necessarily exceeds the marginal private value. This means that there are social

benefits to inducing more savings, and the policymaker should be willing to pay some costs at the mar-

gin to achieve this. In particular, following the well-known logic of Atkinson and Stiglitz (1976), the

tax system should favour any goods that are complements to the main behaviour being taxed – in the

Atkinson-Stiglitz setting labour supply; here saving.

When types are persistent, there is one relevant complement to savings in 𝑡 − 1: the level of insurance

in period 𝑡 . To see why, suppose individuals are ordered by their savings levels in 𝑡 − 1. Given the link

between type and behaviour, those with lower 𝑠𝑡−1 necessarily have higher values for 𝛼𝑡−1. Type per-

sistence means that those with higher 𝛼𝑡−1 place relatively more weight on the likelihood that they will

find themselves with a high consumption need in period 𝑡 . This means that they have a relative prefer-

ence for greater cross-sectional insurance at 𝑡 , by comparison with those whose savings are marginally

higher. A policy that increases the level of insurance that is provided in 𝑡 for each level of 𝑡 − 1 savings,

holding constant the expected utility of those who keep their savings unchanged, will raise the marginal

attractiveness of savings in 𝑡 − 1 for all types.

Thus the presence of 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)

in equation (42) is precisely to capture the effect of the tax cut on

insurance in 𝑡 , and, through this, on savings in 𝑡 − 1. It represents an additional distortion to outcomes

from 𝑡 onwards, relative to an optimal plan from the perspective of 𝑡 alone. This distortion is justified

by the consequent reduction in under-saving prior to 𝑡 . It implies a second, more prosaic source of time

inconsistency in the setting, distinct from the more fundamental societal challenge of a widening wealth

distribution. A policymaker re-optimising in 𝑡 would have no incentive to consider the effect of their

choices on savings in 𝑡 − 1, which would by now already be determined.

Atkinson and Stiglitz (1976) showed that when consumption goods were independent of labour sup-

ply, there were no gains to differential consumption taxation. The counterpart to this result in our setting

is provided by the case of iid types. There, the level of 𝑠𝑡−1 is independent of preferences across period-𝑡

outcomes. Any change to the profile of utilities at 𝑡 will be viewed identically by all types in 𝑡 − 1. Ex-

post insurance is neither a complement nor substitute to savings. This means that it is not optimal for the
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distribution of outcomes in 𝑡 to be influenced by concerns relating to 𝑡 − 1 or earlier: 𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) ≡ 0, and

only contemporaneous elasticities matter.

More generally, this line of reasoning also indicates that the Markov property of shocks is crucial to

ensuring that just two elasticities feature in (42). Markovian shocks imply that the preferences of two

distinct 𝛼𝑡−1 types across alternative allocations from 𝑡 + 1 on are identical, conditional on drawing a

particular 𝛼𝑡 . Compensated distortions to 𝑡 + 1 allocations – which, by definition, hold constant expected

lifetime utility for each period-𝑡 type draw – can do nothing to induce additional saving in 𝑡 − 1 or earlier.

10.2 Intertemporal elasticities: a source of progressivity

Thus it may be desirable to provide additional insurance in 𝑡 , beyond what is contemporaneously opti-

mal, because this helps to increase savings in 𝑡 − 1 – reducing the costs of the tax distortion. Additional

insurance is often associated with additional progressivity in the tax system. In this subsection I for-

malise this link, via the systematic cross-sectional variation that exists in the intertemporal elasticity

𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
.

Formally, I show the following:

Proposition 5. There exists a threshold 𝑠𝑡 such that 𝑠𝑡−1𝜖
𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)

is positive for 𝑠′𝑡 < 𝑠𝑡 , and negative for 𝑠′𝑡 > 𝑠𝑡 .

The implications of this Proposition can be seen by comparing policies that satisfy condition (42) with

those that neglect intertemporal cross-elasticities – as would be optimal for a policymaker re-optimising

in 𝑡 . At the optimum, I have:

E𝑡−1

[
1 −𝑇 ′

𝑡 (𝑠𝑡 )
𝑑𝑠𝑡

𝑑𝑀𝑡

−𝑔𝑡 (𝑠𝑡 )
���� 𝑠𝑡 ≥ 𝑠′𝑡 ] > 𝑇 ′

𝑡

(
𝑠′𝑡
)
𝑠′𝑡𝜀

𝑠
𝑡𝑎𝑡

(
𝑠′𝑡 |𝛼𝑡−1

)
(46)

for all 𝑠′𝑡 below a threshold and

E𝑡−1

[
1 −𝑇 ′

𝑡 (𝑠𝑡 )
𝑑𝑠𝑡

𝑑𝑀𝑡

−𝑔𝑡 (𝑠𝑡 )
���� 𝑠𝑡 ≥ 𝑠′𝑡 ] < 𝑇 ′

𝑡

(
𝑠′𝑡
)
𝑠′𝑡𝜀

𝑠
𝑡𝑎𝑡

(
𝑠′𝑡 |𝛼𝑡−1

)
(47)

for all 𝑠′𝑡 above the same threshold. By contrast, the re-optimising policymaker would set the two sides of

these expressions equal at all 𝑠′𝑡 . The left-hand side represents the marginal redistributive cost of cutting

taxes, and the right-hand side the marginal revenue gain due to substitution effects. At least locally,
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therefore, the re-optimising policymaker would prefer to raise marginal tax rates at low 𝑠′𝑡 , and cut them

at high 𝑠𝑡 ’. The optimum has ‘too much’ progressivity, viewed ex-post.

Why does the elasticity change sign in the manner described in Proposition 5? The explanation de-

rives from the varying importance of two contrasting effects on insurance as the threshold value 𝑠′𝑡 – the

savings level where taxes are being cut – is changed.

A tax cut at 𝑠′𝑡 has two consequences for insurance. The first is to redistribute resources as a whole

to a group of relatively high savers. Since high savers have a low marginal consumption utility, this

worsens the insurance value of savings, and acts as a negative force on 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
. But the second effect

is to improve the nature of insurance within the group that benefits. Uniform income provision, which a

tax cut implies, generates non-uniform effects on utility within the sub-group. Lower savers have higher

marginal utility, and so benefit more. This force improves the overall insurance profile of savings, raising

the value of 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
.

When taxes are cut at a low level of savings, the within-group insurance gains are large relative

to cross-group effects, as the within-group dispersion of marginal utilities is large. As the threshold 𝑠′𝑡

increases, cross-group effects come to be relatively more significant, worsening the insurance properties

of the change and ensuring a lower value for 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
. This is the reason for the single crossing property

established in Proposition 5.

11 An indicative quantification

To give the results a more concrete character, in this penultimate section I provide an indicative quantifi-

cation of the optimal top marginal savings tax, based on the formula (44).

The exercise is more straightforward if the intertemporal response of savings in 𝑡 − 1 to a reprofiling

of insurance in 𝑡 , captured by the elasticity 𝜖𝑠
𝑡−1,𝑡

(
𝑠′𝑡
)
, is initially assumed to be small, or of low relevance

because the lagged marginal tax rate is small. This corresponds, for instance, to a case when type persis-

tence is low. It is also the relevant exercise for the initial period, 𝑡 = 0. Given Proposition 5, this approach
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will tend to bias the resulting figure downwards. The optimality formula simplifies to:

𝑇 ′
𝑡 (𝑠) =

1 −𝑔𝑡 (𝑠)
𝑑𝑠𝑡
𝑑𝑀𝑡

���
𝑠
+ 𝜀𝑠𝑡𝑎𝑡

(
𝑠 |𝛼𝑡−1

) (48)

which is biased below the true optimal value by an amount:

−
𝑅𝑇 ′

𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1
𝑠
𝜖𝑠
𝑡−1,𝑡 (𝑠) 𝑎𝑡

(
𝑠 |𝛼𝑡−1)

𝑑𝑠𝑡
𝑑𝑀𝑡

���
𝑠
+ 𝜀𝑠𝑡𝑎𝑡

(
𝑠 |𝛼𝑡−1

) ≥ 0 (49)

This bias will be ignored in the initial discussion.

If consumption approaches zero at the upper limit for savings, an empirical value of 𝑑𝑠𝑡
𝑑𝑀𝑡

���
𝑠

equal

to 1 is an obvious approximation, corresponding to homotheticity in demand. Since savings and con-

sumption covary perfectly, conditional on within-period wealth, the value of 𝜀𝑠𝑡𝑎𝑡
(
𝑠 |𝛼𝑡−1) must be equal

to the Pareto parameter for the lower tail of the conditional consumption distribution, multiplied by the

compensated intertemporal elasticity of consumption. Toda and Walsh (2015) suggest a value of approx-

imately 4 for the lower consumption Pareto parameter, based on cross-sectional US data. But unlike 𝑎𝑡 in

our formulation, this is based on a sample of the entire population, not a conditional cross section with

common wealth. The relevant cross-sectional object is likely to be substantially lower.

The compensated intertemporal elasticity of consumption is strictly less than the Frisch, for which a

value of around 0.5 is standard.37 Since the difference between the two becomes small as the share of

current consumption in marginal expenditure becomes small, this value is a reasonable starting point.

Taken together, these assumptions would imply a value for the top marginal tax rate equal to 1−𝑔𝑡 (𝑠 )
3

at most, where 𝑔𝑡 (𝑠) is the value of the social welfare weight at the highest savings level. The social

welfare weight is a harder object to quantify. Unlike static Mirrleesian environments, it does not make

sense to assume that it approaches zero for the least-favoured types. To see why, recall that 𝑔𝑡 (𝑠𝑡 ) is

directly proportional to the marginal utility of consumption 𝛼𝑡𝑢
′ (𝑐𝑡 ), which is optimally set equal to

the marginal value of savings. Even individuals whose draw for 𝛼𝑡 is arbitrarily close to zero will have

returns to saving that are bounded above zero, and will optimally reduce their period-𝑡 consumption

until a high value for 𝑢′ (𝑐𝑡 ) offsets low 𝛼𝑡 .

37See, for instance, Attanasio and Weber (2010).
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To make progress, recall that equation (43) shows that the cross-sectional average value for 𝑔𝑡 , 𝑔𝑡 , is 1

minus the value of tax recovered through income effects at the margin, both in 𝑡 and 𝑡 − 1. Let the latter

value be equal to some number 𝜒𝑡 ∈ (0, 1). Simple algebra gives:

1 −𝑔𝑡 (𝑠) = 𝜒𝑡 + (1 − 𝜒𝑡 )
(
𝑔𝑡 −𝑔𝑡 (𝑠)

𝑔𝑡

)
(50)

= 𝜒𝑡 + (1 − 𝜒𝑡 )
(
E𝑡−1 [𝛼𝑡𝑢′ (𝑐𝑡 )] − 𝛼𝑢′

(
𝑐𝑡

(
𝛼
) )

E𝑡−1 [𝛼𝑡𝑢′ (𝑐𝑡 )]

)
(51)

This varies in the size of the average income effect on tax revenue, 𝜒𝑡 , and the proportional deviation

of the lowest type’s marginal utility from the average. An individual with type draw 𝛼 in 𝑡 is assumed

to have minimal consumption needs in period 𝑡 , and can devote all resources to saving. The formula

requires an estimate for the impact that this has on their marginal utility of wealth, relative to the average.

With time-separable utility and an EIS of 0.5, the proportional difference in marginal utility is roughly

two times the proportional difference in lifetime consumption. Thus if average current consumption is

valued generously at ten per cent of average wealth, the term
(
𝑔𝑡−𝑔𝑡 (𝑠 )

𝑔𝑡

)
will be approximately 0.2.38

The value of 𝜒𝑡 , the average income effect on tax revenue, is obviously difficult to fix in a partial

quantification of this kind, because it depends on the chosen marginal tax rate across the entire range of

savings. The general lesson of this section is that a top marginal tax rate as high as 10 per cent is hard

to justify. Since the qualitative factors that matter elsewhere in the distribution tend to push towards

a lower marginal rate on lower savings levels,39 and since the proportion of additional income that is

saved will generally be below 100 per cent, 0.1 is a generous upper bound for 𝜒𝑡 .

Given these considerations, Table 1 summarises the implied top marginal tax rates for alternative

values of the three relevant statistics: 𝑎𝑡 , 𝜒𝑡 and
(
𝑔𝑡−𝑔𝑡 (𝑠 )

𝑔𝑡

)
, given 𝜀𝑠𝑡 = 0.5 and for negligible intertemporal

revenue effects:

The main lesson is that the top marginal tax rate on savings could perhaps come close to 10 per cent,

but only with some very favourable assumptions, particularly on the value of the cross-sectional Pareto

38Persistence in 𝛼 provides a direct channel for lower period-𝑡 types to value a unit of savings less than the average type,
but since insurance is incomplete this effect will be limited: the marginal value of saving, even to a low current type, will be
dominated by the risk of high type draws in the future.

39Specifically, the expected value of the welfare weight for higher savers is increasing as the threshold savings value falls,
and the local Pareto parameter will be higher at modal points in the distribution.

43



𝑎𝑡 = 4 𝑎𝑡 = 6 𝑎𝑡 = 10

(
𝑔𝑡−𝑔𝑡 (𝑠 )

𝑔𝑡

)
= 0.05

𝜒𝑡 = 0.01 0.020 0.015 0.010

𝜒𝑡 = 0.05 0.033 0.024 0.016

𝜒𝑡 = 0.1 0.048 0.036 0.024

(
𝑔𝑡−𝑔𝑡 (𝑠 )

𝑔𝑡

)
= 0.1

𝜒𝑡 = 0.01 0.036 0.027 0.018

𝜒𝑡 = 0.05 0.048 0.036 0.024

𝜒𝑡 = 0.1 0.063 0.048 0.032

(
𝑔𝑡−𝑔𝑡 (𝑠 )

𝑔𝑡

)
= 0.2

𝜒𝑡 = 0.01 0.069 0.052 0.035

𝜒𝑡 = 0.05 0.08 0.06 0.04

𝜒𝑡 = 0.1 0.093 0.07 0.047

Table 1: Top marginal savings tax rates implied by alternative statistics

parameter. More likely is a number of the order of 1 to 3 per cent. This is still significant relative to

a typical risk-free rate of return, but leaves the possibility of some post-tax interest at the margin for

even the highest savers. Moreover, even the lower numbers depend critically on the tail properties of

the cross-sectional savings distribution. If – as conjectured by Toda and Walsh (2015) – Pareto tails for

the overall consumption distribution only emerge as a consequence of demographic evolution, and are

absent within cohorts, then 𝑎𝑡 (𝑠) = ∞ would be a more reasonable assumption. In this case we would

return to zero distortion at the top.

Finally, I provide some considerations of the bias due to ignoring intertemporal revenue effects.

Again assuming that all additional income is saved by 𝛼 types, this bias is given by:

−𝑇 ′
𝑡−1 (𝑠𝑡−1)

𝑠𝑡−1𝜖
𝑠
𝑡−1,𝑡 (𝑠)
𝑠𝜀𝑠𝑡

𝑅

1 + 1
𝜀𝑠𝑡 𝑎𝑡 (𝑠 |𝛼𝑡−1)

(52)

The final fraction here is likely to be in the neighbourhood of 1. Clearly it is less than 𝑅, more significantly

so the lower the Pareto parameter. The middle ratio is more significant: the ratio of 𝑠𝑡−1𝜖
𝑠
𝑡−1,𝑡 (𝑠) to 𝑠𝜀𝑠𝑡 .

Since 𝑠 is the highest level of savings in 𝑡 for those who saved 𝑠𝑡−1 in the previous period, 𝑠𝑡−1
𝑠

seems

likely to be small. The compensated intertemporal savings response to a cut in the upper marginal tax
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rate is not a commonly estimated object, and there is little to go on except priors. It seems very likely that���𝜖𝑠
𝑡−1,𝑡 (𝑠)

��� < 𝜀𝑠𝑡 . Over all, an upper bound for the term in (52) equal to 0.5 ·𝑇 ′
𝑡−1 (𝑠𝑡−1) seems quite generous.

If lagged marginal tax rates are of the same order of magnitude as current, intertemporal considerations

could conceivably raise top rates by at most a half of their value in Table 1.

Perhaps more interesting is the qualitative observation that (52) need not go to zero when 𝑎𝑡 → ∞.

That is, intertemporal savings responses imply there may be a case for distorting period-𝑡 savings, even

though within-period considerations alone would yield no distortion at the top. This will happen only if

𝜖𝑠
𝑡−1,𝑡 (𝑠) remains strictly negative in such a case: the compensated insurance effects of a tax cut must still

be enough to induce a reduction in prior savings. But the conditions for this to hold are mathematically

distinct from the conditions for 𝑎𝑡 → ∞.40

12 Conclusion

This paper contains two main messages. The first, from a policy perspective, is that a widely-used

model of social insurance under imperfect information implies a novel justification for taxing savings.

Faced with a population whose consumption needs are heterogeneous and unobserved, it is best for the

policymaker to provide a uniform lump-sum resource transfer to all agents period-by-period, and to tax

the savings of those whose very decision to save reveals that their need is low.

The second main message of the paper is of relevance to the wider dynamic tax literature. It is that

– contrary to widespread perceptions – the ‘mechanism design’ approach to dynamic optimal taxation

can give rise to simple, intuitive ‘sufficient statistics’ representations of optimal taxes. Indeed, it is pre-

cisely the assumptions of the mechanism design approach – additively-separable utility over time, and

Markovian shock processes – that appear to simplify behavioural responses in a way that keeps them

tractable. In a multi-period world, tax design must inevitably make some simplifying assumptions, to

avoid being overwhelmed by the multitude of possible cross-period behavioural responses. One option,

pursued in the literature already, is to focus exclusively on steady-state outcomes. Though defensible,

this is a significant departure from conventional approaches, both positive and normative. This paper

40If Assumption 4, the monotone likelihood ratio property, holds then 𝑠𝑡−1𝜖
𝑠
𝑡−1,𝑡 (𝑠) will be bounded away from zero: c.f.

expression (193) below. This assumption does not place any restrictions on 𝑎𝑡 .
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suggests that mechanism design offers a theory-guided alternative route.
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A Appendix

A.1 Proof of Lemma 1

This result is an application of Theorem 2 in Milgrom and Segal (2002), plus elemenatary manipulations.

First, note that the utility of type 𝛼 ′𝑡 from arbitrary type report 𝛼 ′′𝑡 in period 𝑡 can be written in the form:

𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉

(
𝛼𝑡−1,𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝑑Π

(
𝛼𝑡+1 |𝛼 ′𝑡

)
(53)

The boundedness of lifetime utility (constraint (10)) and the differentiability of the conditional density 𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
in 𝛼 ′𝑡 (Assumption 2) together imply that this expression is differentiable in 𝛼 ′𝑡 for 𝛼 ′𝑡 ∈

(
𝛼 ,𝛼

)
. Its derivative with

respect to 𝛼 ′𝑡 is:

𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉

(
𝛼𝑡−1,𝛼 ′′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼 ′𝑡

𝑑𝛼𝑡+1 (54)

Constraint (10) implies that 𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

) )
and 𝑉

(
𝛼𝑡−1,𝛼 ′′𝑡 ,𝛼𝑡+1

)
are bounded for all 𝛼 ′′𝑡 and 𝛼𝑡+1. 𝜋

(
𝛼𝑡+1 |𝛼 ′𝑡

)
is

continuously differentiable in 𝛼 ′𝑡 by assumption, and 𝛼 ′𝑡 inhabits a compact interval, so 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

is also bounded

by construction. Taken together this implies that the object in (54) is bounded in absolute value, uniformly across

type reports 𝛼 ′′𝑡 . Since the allocation satisfies the general incentive compatibility restriction (12) under the condition

of the Lemma, the set of optimal choices for all types must, trivially, be nonempty. This establishes the conditions

required for the Milgrom and Segal’s Theorem 2 to be applied.

A direct application gives that 𝑉𝑡
(
𝛼𝑡−1;𝛼𝑡

)
is absolutely continuous in 𝛼𝑡 for all 𝑡 and 𝛼𝑡−1, with:

𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

))
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

)
𝑑Π

(
𝛼𝑡+1 |𝛼 ′𝑡

)
(55)

=𝛼𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼

))
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼 ,𝛼𝑡+1

)
𝑑Π

(
𝛼𝑡+1 |𝛼

)
+
∫ 𝛼 ′

𝑡

𝛼

1
𝛼𝑡

{
𝛼𝑡𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

))
+ 𝛽𝛼𝑡

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1

}
𝑑𝛼𝑡

To obtain the representation in the main text, we then make use of the following sub-Lemma:
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Lemma 4. For all
(
𝛼𝑡 ,𝛼 ′𝑡

)
∈ 𝐴2 and 𝛼𝑡−1 ∈ 𝐴𝑡 :

𝛽𝛼𝑡

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1 = E𝑡

[ ∞∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡𝐷𝑡 ,𝑠 (𝛼𝑠 ) 𝛼𝑠𝑢
(
𝑐𝑠

(
𝛼𝑡−1,𝛼 ′𝑡 , ...,𝛼𝑠

))�����𝛼𝑡
]

Proof. Given the absolute continuity of the value function, the object:

𝛽𝛼𝑡

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1

can be integrated by parts, giving:

𝛽𝛼𝑡

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1

=𝛽𝛼𝑡

∫
𝛼𝑡+1

[
𝑢𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

)
+ 𝛽

∫
𝛼𝑡+2

𝑉𝑡+2

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)
𝑑𝛼𝑡+1

𝑑𝛼𝑡+2

]
𝑑 (1 − Π (𝛼𝑡+1 |𝛼𝑡 ))

𝑑𝛼𝑡
𝑑𝛼𝑡+1

=𝛽

∫
𝛼𝑡+1

𝛼𝑡
𝑑 (1−Π (𝛼𝑡+1 |𝛼𝑡 ) )

𝑑𝛼𝑡

𝛼𝑡+1𝜋 (𝛼𝑡+1 |𝛼𝑡 )

[
𝛼𝑡+1𝑢𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

)
+ 𝛽𝛼𝑡+1

∫
𝛼𝑡+2

𝑉𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)
𝑑𝛼𝑡+1

𝑑𝛼𝑡+2

]
𝑑Π (𝛼𝑡+1 |𝛼𝑡 )

=

∫
𝛼𝑡+1

𝛽𝜌 (𝛼𝑡+1 |𝛼𝑡 )
[
𝛼𝑡+1𝑢𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

)
+ 𝛽𝛼𝑡+1

∫
𝛼𝑡+2

𝑉𝑡+2

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)
𝑑𝛼𝑡+1

𝑑𝛼𝑡+2

]
𝑑Π (𝛼𝑡+1 |𝛼𝑡 )

where 𝑢𝑡+1
(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

)
is used as shorthand for 𝑢

(
𝑐𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡 ,𝛼𝑡+1

) )
. Applying this result recursively, together

with the assumption that 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) ∈ (0, 1) (Assumption 3), and the boundedness of value in 𝑡 , the result follows.

□

Using the definition of 𝜔Δ
𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)
, setting 𝛼 ′𝑡 = 𝛼𝑡 gives:

𝛼𝑡

∫
𝛼𝑡+1

𝑉𝑡+1

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑡+1

) 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1 = 𝜔Δ
𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)
Using this and the definition of 𝜔𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)
, (55) collapses to (15).

A.2 Proof of Proposition 1

A.2.1 ‘If’

Suppose that global incentive compatibility fails. By the time separability of preferences, for some 𝑡 and history

𝛼𝑡−1 there must exist 𝛼 ′𝑡 , 𝛼
′′
𝑡 such that:

𝛼 ′𝑡𝑢𝑡
(
𝛼 ′′𝑡

)
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1 > 𝛼 ′𝑡𝑢𝑡

(
𝛼 ′𝑡
)
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1
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or equivalently:

𝑢𝑡
(
𝛼 ′′𝑡

)
+ 𝛽

𝛼 ′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1 > 𝑢𝑡

(
𝛼 ′𝑡
)
+ 𝛽

𝛼 ′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1 (56)

where 𝑢𝑡 (𝛼𝑡 ) is used as shorthand for 𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

) )
, and dependence of 𝑉𝑡+1 on 𝛼𝑡−1 is similarly suppressed. By

the absolute continuity of lifetime utility in type:

𝑢𝑡
(
𝛼 ′′𝑡

)
+ 𝛽

𝛼 ′′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′′𝑡

)
𝑑𝛼𝑡+1

−𝑢𝑡
(
𝛼 ′𝑡
)
+ 𝛽

𝛼 ′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

𝑑

𝑑𝛼𝑡

{
1
𝛼𝑡

[
𝛼𝑡𝑢𝑡 (𝛼𝑡 ) + 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1 (𝛼𝑡 ,𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

]}
𝑑𝛼𝑡

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡


− 1

𝛼2
𝑡

[
𝛼𝑡𝑢𝑡 (𝛼𝑡 ) + 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1 (𝛼𝑡 ,𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

]
+ 1
𝛼𝑡

𝑑
𝑑𝛼𝑡

[
𝛼𝑡𝑢𝑡 (𝛼𝑡 ) + 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1 (𝛼𝑡 ,𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

]  𝑑𝛼𝑡
=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡


− 1

𝛼2
𝑡

[
𝛼𝑡𝑢𝑡 (𝛼𝑡 ) + 𝛽𝜔𝑡+1

(
𝛼𝑡−1,𝛼𝑡

) ]
+ 1
𝛼2
𝑡

[
𝛼𝑡𝑢𝑡 (𝛼𝑡 ) + 𝛽𝜔Δ

𝑡+1

(
𝛼𝑡−1,𝛼𝑡

) ]  𝑑𝛼𝑡
= − 𝛽

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

(
𝜔𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)
−𝜔Δ

𝑡+1

(
𝛼𝑡−1,𝛼𝑡

))
𝑑𝛼𝑡

where the penultimate line has made use of the relaxed incentive constraint (15).

Applying this result in (56) yields:

𝑢𝑡
(
𝛼 ′′𝑡

)
+ 𝛽

𝛼 ′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1 > 𝑢𝑡

(
𝛼 ′′𝑡

)
+ 𝛽

𝛼 ′′𝑡

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′′𝑡

)
𝑑𝛼𝑡+1

+ 𝛽
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

[
𝜔𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)
+𝜔Δ

𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)]
𝑑𝛼𝑡

Or:

𝛽

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

∫
𝛼𝑡+1

(
𝑉𝑡+1

(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
−𝑉𝑡+1 (𝛼𝑡 ,𝛼𝑡+1)

) (
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) − 𝛼𝑡

𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

)
𝑑𝛼𝑡 > 0

Applying Lemma 4 and the definition of 𝑉𝑡+1, this is equivalent to:

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

{
E𝑡

[ ∞∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡
(
1 −𝐷𝑡 ,𝑠 (𝛼𝑠 )

)
𝛼𝑠

[
𝑢𝑠

(
𝛼𝑡−1,𝛼 ′′𝑡 , ...,𝛼𝑠

)
−𝑢𝑠 (𝛼𝑠 )

] �����𝛼𝑡
]}
𝑑𝛼𝑡 > 0

But this directly contradicts the integral monotonicity condition given in the Proposition.
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A.2.2 ‘Only if’

Suppose integral monotonicity fails for some
(
𝛼 ′𝑡 ,𝛼

′′
𝑡

)
, i.e.:

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼2
𝑡

{
E𝑡

[ ∞∑︁
𝑠=𝑡+1

𝛽𝑠−𝑡
(
1 −𝐷𝑡 ,𝑠 (𝛼𝑠 )

)
𝛼𝑠

[
𝑢𝑠

(
𝛼𝑡−1,𝛼 ′′𝑡 , ...,𝛼𝑠

)
−𝑢𝑠 (𝛼𝑠 )

] �����𝛼𝑡
]}
𝑑𝛼𝑡 > 0

Applying the steps for the previous subsection in reverse, this is equivalent the inequality:

𝛼 ′𝑡𝑢𝑡
(
𝛼 ′′𝑡

)
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1 > 𝛼 ′𝑡𝑢𝑡

(
𝛼 ′𝑡
)
+ 𝛽

∫
𝛼𝑡+1

𝑉𝑡+1
(
𝛼 ′𝑡 ,𝛼𝑡+1

)
𝜋
(
𝛼𝑡+1 |𝛼 ′𝑡

)
𝑑𝛼𝑡+1

Thus global incentive compatibility must be violated for type 𝛼 ′𝑡 .

A.3 Proof of Proposition 2

The key first-order conditions are constructed by studying differential changes to the allocation that remain within

the constraint space. The derivations are taken by reference to Lagrange multipliers, which are assumed to take a

standard algebraic form. It is simple to show that these multipliers can be eliminated by taking linear combinations

of the resulting expressions. Thus by construction, the results could equivalently be derived through a calculus of

variations approach, and do not depend on the assumed form for the multipliers.

The relaxed planner’s problem is to solve:

max
{𝑐𝑡 (𝛼𝑡 ) }𝛼𝑡

∞∑︁
𝑡=0

∫
𝛼𝑡

𝛼𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡
) )
𝑑Π𝑡

(
𝛼𝑡
)

subject to the resource constraint:
∞∑︁
𝑡=0

𝑅−𝑡
[
𝑦𝑡 −

∫
𝛼𝑡

𝑐𝑡
(
𝛼𝑡
)
𝑑Π𝑡

(
𝛼𝑡
) ]

≥ 0 (57)

and the relaxed incentive constraint:

𝛼 ′𝑡𝑢
(
𝑐𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

))
+ 𝛽𝜔𝑡+1

(
𝛼𝑡−1,𝛼 ′𝑡

)
= 𝛼𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼

))
+ 𝛽𝜔𝑡+1

(
𝛼𝑡−1,𝛼

)
(58)

+
∫ 𝛼 ′

𝑡

𝛼

1
𝛼𝑡

[
𝛼𝑡𝑢

(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

))
+ 𝛽𝜔Δ

𝑡+1

(
𝛼𝑡−1,𝛼𝑡

)]
𝑑𝛼𝑡

53



with, for all 𝑡 ≥ 0:

𝜔𝑡+1
(
𝛼𝑡
)

:=
∫
𝛼𝑡+1

{
𝛼𝑡+1𝑢

(
𝑐𝑡+1

(
𝛼𝑡 ,𝛼𝑡+1

) )
+ 𝛽𝜔𝑡+2

(
𝛼𝑡 ,𝛼𝑡+1

)}
𝑑Π (𝛼𝑡+1 |𝛼𝑡 ) (59)

𝜔Δ
𝑡+1

(
𝛼𝑡
)

:=
∫
𝛼𝑡+1

𝜌 (𝛼𝑡+1 |𝛼𝑡 ) ·
{
𝛼𝑡𝑢

(
𝑐𝑡+1

(
𝛼𝑡 ,𝛼𝑡+1

) )
+ 𝛽𝜔Δ

𝑡+2
(
𝛼𝑡 ,𝛼𝑡+1

)}
𝑑Π (𝛼𝑡+1 |𝛼𝑡 ) (60)

plus the interiority restriction, which is assumed not to bind for the Proposition. We place multiplier 𝜂 on (57),

𝛽𝑡 𝜇𝑡
(
𝛼𝑡−1,𝛼𝑡

)
𝑑Π𝑡

(
𝛼𝑡−1,𝛼𝑡

)
on (58), 𝛽𝑡+1𝜆𝑡+1

(
𝛼𝑡
)
𝑑Π𝑡

(
𝛼𝑡
)

on (59) and 𝛽𝑡+1𝜆Δ
𝑡+1

(
𝛼𝑡
)
𝑑Π𝑡

(
𝛼𝑡
)

on (60). Necessary first-

order optimality conditions are:

• With respect to 𝑐𝑡
(
𝛼𝑡
)

, a.e.:

0 =𝛼𝑡𝑢
′ (𝑐𝑡 (𝛼𝑡 ) ) · 

1 + 𝜆𝑡
(
𝛼𝑡−1) + 𝜆Δ𝑡 (

𝛼𝑡−1) 𝜌 (𝛼𝑡 |𝛼𝑡−1) + 𝜇𝑡
(
𝛼𝑡
)

− 1
𝛼𝑡𝜋 (𝛼𝑡 |𝛼𝑡−1 )

∫ 𝛼̄

𝛼𝑡
𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

 − (𝛽𝑅)−𝑡 𝜂 (61)

• With respect to 𝜔𝑡+1
(
𝛼𝑡
)
, a.e.:

0 = − 𝜆𝑡+1
(
𝛼𝑡
)
+ 𝜆𝑡

(
𝛼𝑡−1

)
+ 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
(62)

• With respect to 𝜔Δ
𝑡+1

(
𝛼𝑡
)
, a.e.:

0 = − 𝜆Δ
𝑡+1

(
𝛼𝑡
)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1) (63)

− 1
𝛼𝑡𝜋 (𝛼𝑡 |𝛼𝑡−1)

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼

• With respect to 𝑐𝑡
(
𝛼𝑡−1,𝛼

)
:

0 =

∫ 𝛼̄

𝛼
𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (64)

Throughout here, we normalise 𝜆0 = 𝜆Δ0 ≡ 0, and let 𝜋 (𝛼𝑡 |𝛼𝑡−1) be replaced with 𝜋 (𝛼0) when 𝑡 = 0.

Using (62) and (63) in (61) gives:

(𝛽𝑅)−𝑡 𝜂
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))
= 1 + 𝜆𝑡+1

(
𝛼𝑡
)
+ 𝜆Δ

𝑡+1
(
𝛼𝑡
)

(65)
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Condition (61) can be rearranged to:

(𝛽𝑅)−𝑡 𝜂
𝑢′ (𝑐𝑡 (𝛼𝑡 ))

− 𝛼𝑡
[
1 + 𝜆𝑡

(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1)

]
(66)

=𝛼𝑡 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
− 1
𝜋 (𝛼𝑡 |𝛼𝑡−1)

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

This can be integrated across all 𝛼𝑡 :∫ 𝛼̄

𝛼

{
(𝛽𝑅)−𝑡 𝜂

𝑢′
(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

) ) − 𝛼𝑡 [1 + 𝜆𝑡
(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1)

]}
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (67)

=

∫ 𝛼̄

𝛼

{
𝛼𝑡 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) −

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

}
𝑑𝛼𝑡

Integrating by parts, making use of (64):∫ 𝛼̄

𝛼

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡𝑑𝛼𝑡 =

∫ 𝛼̄

𝛼
𝛼𝑡 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

and so: ∫ 𝛼̄

𝛼

{
(𝛽𝑅)−𝑡 𝜂

𝑢′
(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

) ) − 𝛼𝑡 [1 + 𝜆𝑡
(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1)

]}
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 = 0 (68)

or, using (5):
1

E [𝛼𝑡 |𝛼𝑡−1]
E

[
(𝛽𝑅)−𝑡 𝜂
𝑢′ (𝑐𝑡 (𝛼𝑡 ))

����𝛼𝑡−1
]
=

[
1 + 𝜆𝑡

(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜀𝛼 (𝛼𝑡−1)

]
(69)

Rearranging (69) for period 0 gives an expression for 𝜂:

𝜂 =
E [𝛼0]

E
[

1
𝑢′ (𝑐0 (𝛼0 ) )

] (70)

Combining (65) and (69) gives expressions for the objects 1 + 𝜆𝑡+1
(
𝛼𝑡
)

and 𝜆Δ
𝑡+1

(
𝛼𝑡
)
:

1 + 𝜆𝑡+1
(
𝛼𝑡
)
= (𝛽𝑅)−𝑡 𝜂 1

1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E [𝛼𝑡+1 |𝛼𝑡 ]
E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ] − 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))

}
(71)

𝜆Δ
𝑡+1

(
𝛼𝑡
)
= (𝛽𝑅)−𝑡 𝜂 1

1 − 𝜀𝛼 (𝛼𝑡 )

{
1

𝛼𝑡𝑢
′ (𝑐𝑡 (𝛼𝑡 ))

− 1
E [𝛼𝑡+1 |𝛼𝑡 ]

E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ]} (72)
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Integrating (66) above any given 𝛼 ′𝑡 gives:∫ 𝛼̄

𝛼 ′
𝑡

{
(𝛽𝑅)−𝑡 𝜂

𝑢′
(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

) ) − 𝛼𝑡 [1 + 𝜆𝑡
(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1)

]}
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (73)

=

∫ 𝛼̄

𝛼 ′
𝑡

{
𝛼𝑡 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) −

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

}
𝑑𝛼𝑡

and integrating by parts, we have:∫ 𝛼̄

𝛼 ′
𝑡

∫ 𝛼̄

𝛼𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡𝑑𝛼𝑡 (74)

= − 𝛼 ′𝑡
∫ 𝛼̄

𝛼 ′
𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 +

∫ 𝛼̄

𝛼 ′
𝑡

𝛼𝑡 𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

so: ∫ 𝛼̄

𝛼 ′
𝑡

{
(𝛽𝑅)−𝑡 𝜂

𝑢′
(
𝑐𝑡

(
𝛼𝑡−1,𝛼𝑡

) ) − 𝛼𝑡 [1 + 𝜆𝑡
(
𝛼𝑡−1

)
+ 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1)

]}
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (75)

=𝛼 ′𝑡

∫ 𝛼̄

𝛼 ′
𝑡

𝜇𝑡

(
𝛼𝑡−1,𝛼𝑡

)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

= − 𝜋
(
𝛼 ′𝑡 |𝛼𝑡−1

) (
𝛼 ′𝑡
)2

{
𝜆Δ
𝑡+1

(
𝛼𝑡
)
− 𝜌

(
𝛼 ′𝑡 |𝛼𝑡−1

)
𝜆Δ𝑡

(
𝛼𝑡−1

)}
Applying the definition of a conditional expectation, and letting 𝜂𝑡 := (𝛽𝑅)−𝑡 𝜂, this immediately gives the main

condition in the Proposition.

A.4 Proof of Proposition 3

The proof of Proposition 2 has already established the result for 𝑠 = 𝑡 and 𝑠 = 𝑡 + 1. From (71) and (72) we

immediately have:
1

𝛼𝑡𝑢
′ (𝑐𝑡 )

=
1 + 𝜆𝑡+1 + 𝜆Δ𝑡+1

𝜂𝑡
(76)

1
E𝑡 [𝛼𝑡+1]

E𝑡

[
1

𝛽𝑅𝑢′ (𝑐𝑡+1)

]
=

1 + 𝜆𝑡+1 + 𝜆Δ𝑡+1𝜀
𝛼 (𝛼𝑡 )

𝜂𝑡
(77)

and note that 𝜀𝛼 (𝛼𝑡 ) =
E𝑡 [𝐷𝑡 ,𝑡+1 (𝛼𝑡+1)𝛼𝑡+1]

E𝑡 [𝛼𝑡+1 ] .

The proof then works recursively. Suppose that, for 𝑟 < 𝑠:

E𝑟

[
𝜂𝑟

(𝛽𝑅)𝑠−𝑟 𝑢′ (𝑐𝑠 )

]
= [1 + 𝜆𝑟+1] E𝑟 [𝛼𝑠 ] + 𝜆Δ𝑟+1E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
(78)
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Then:

E𝑟−1

[
𝜂𝑟−1

(𝛽𝑅)𝑠−𝑟+1 𝑢′ (𝑐𝑠 )

]
(79)

=E𝑟−1
{
[1 + 𝜆𝑟+1] E𝑟 [𝛼𝑠 ] + 𝜆Δ𝑟+1E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]}
=

∫
𝛼𝑟

{[
𝜌 (𝛼𝑟 |𝛼𝑟−1) 𝜆Δ𝑟 − 1

𝛼𝑟𝜋 (𝛼𝑟 |𝛼𝑟−1)

∫ 𝛼̄

𝛼𝑟

𝜇𝑟 (𝛼𝑟 ) 𝜋 (𝛼𝑟 |𝛼𝑟−1) 𝑑𝛼𝑟
]
· E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
+ [1 + 𝜆𝑟 + 𝜇𝑟 (𝛼𝑟 )] · E𝑟 [𝛼𝑠 ]} 𝜋 (𝛼𝑟 |𝛼𝑟−1) 𝑑𝛼𝑟 (80)

By an identical argument to Lemma 4, we have:

𝑑

𝑑𝛼𝑟
[E𝑟 [𝛼𝑠 ]] =

1
𝛼𝑟

E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
Integrating by parts, we therefore have:∫

𝛼𝑟

1
𝛼𝑟

E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

] [∫ 𝛼̄

𝛼𝑟

𝜇𝑟 (𝛼𝑟 ) 𝜋 (𝛼𝑟 |𝛼𝑟−1) 𝑑𝛼𝑟
]
𝑑𝛼𝑟 =

∫
𝛼𝑟

E𝑟 [𝛼𝑠 ] 𝜇𝑟 (𝛼𝑟 ) 𝜋 (𝛼𝑟 |𝛼𝑟−1) 𝑑𝛼𝑟 (81)

where we have used condition (64). Using this in the preceeding expression, the terms in 𝜇𝑟 cancel:

E𝑟−1

[
𝜂𝑟−1

(𝛽𝑅)𝑠−𝑟+1 𝑢′ (𝑐𝑠 )

]
=

∫
𝛼𝑟

{
[1 + 𝜆𝑟 ] · E𝑟 [𝛼𝑠 ] + 𝜌 (𝛼𝑟 |𝛼𝑟−1) 𝜆Δ𝑟 · E𝑟

[
𝐷𝑟 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]}
𝜋 (𝛼𝑟 |𝛼𝑟−1) 𝑑𝛼𝑟 (82)

= [1 + 𝜆𝑟 ] · E𝑟−1 [𝛼𝑠 ] + 𝜆Δ𝑟 · E𝑟−1
[
𝐷𝑟−1,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
which makes use of the definition of 𝐷𝑟−1,𝑠 (𝛼𝑠 ). Thus we have iterated expectations backwards a period from

condition (78). Now, for any 𝑠 > 0, condition (77) implies:

E𝑠−1

[
𝜂𝑠−1

𝛽𝑅𝑢′ (𝑐𝑠 )

]
= [1 + 𝜆𝑠 ] E𝑠−1 [𝛼𝑠 ] + 𝜆Δ𝑠 E𝑠−1

[
𝐷𝑠−1,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
(83)

The preceeding arguments allow this to be iterated back to 𝑡 , as required.
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A.5 The infinite-horizon budget constraint

Conditions (23) and (24) imply that the following condition must be satisfied between all periods 𝑡 ≥ 0, and 𝑇 > 𝑡 ,

for any realised consumption-savings path:

𝑀𝑡 =

𝑇∑︁
𝑟=𝑡

𝑅𝑡−𝑟
[
𝑐𝑟 +𝑇𝑟

(
𝑠𝑟 ; 𝑠𝑟−1

)]
+ 𝑅𝑡−𝑇−1𝑀𝑇+1 (84)

Since consumption is always positive, its net-present value must converge along Π-almost all history paths that

are realised in equilibrium – or else feasibility would be violated. In such cases we can take limits to give:

𝑀𝑡 =

∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑐𝑟 + lim
𝑇→∞

[
𝑇∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟
(
𝑠𝑟 ; 𝑠𝑟−1

)
+ 𝑅𝑡−𝑇−1𝑀𝑇+1

]
(85)

The no-Ponzi constraint implies that the second term inside the limit is weakly positive, though technically it need

not converge to zero: it is possible that the agent may only obtain their desired consumption stream by holding

wealth into the infinite future whose present value is strictly positive.41 But since this serves as a de facto tax,

without loss we can write:

𝑀𝑡 =

∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟
[
𝑐𝑟 +𝑇𝑟

(
𝑠𝑟 ; 𝑠𝑟−1

)]
(86)

where:
∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟
(
𝑠𝑟 ; 𝑠𝑟−1

)
:= lim

𝑇→∞

[
𝑇∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟
(
𝑠𝑟 ; 𝑠𝑟−1

)
+ 𝑅𝑡−𝑇−1𝑀𝑇+1

]
(87)

A.6 Proof of Lemma 2

Equation (31) follows immediately from (30) given the additional differentiability assumed, so I focus exclusively

on establishing (30). Suppressing history dependence for simplicity, by definition of T we have:

E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟 (𝑠𝑟 )
����� 𝑠𝑡−1,𝛼𝑡

]
= 𝑇𝑡

(
𝑠∗𝑡 (𝛼𝑡 )

)
+ 𝑅−1T𝑡+1

(
𝑠∗𝑡 (𝛼𝑡 ) ,𝛼𝑡

)
(88)

41Transversality rules this out in a conventional infinite-horizon consumption-savings problem. Here, period-by-period
feasibility is allowed to depend in complex ways on individuals’ asset choices, so that it may not be possible to improve on a
strategy that retains strictly positive asset holdings at the limit. None of the analysis that follows makes use of this possibility
– it is here for completeness only.
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Differentiating this, and making use of (28):

𝛼𝑡
𝑑

𝑑𝛼𝑡

{
E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑇𝑟 (𝑠𝑟 )
����� 𝑠𝑡−1,𝛼𝑡

]}
= 𝛼𝑡

𝑑

𝑑𝛼𝑡

[
𝑇𝑡

(
𝑠∗𝑡 (𝛼𝑡 )

) ]
+ 𝑅−1𝛼𝑡

𝑑

𝑑𝛼𝑡

{
T𝑡+1

(
𝑠∗𝑡 (𝛼𝑡 ) ,𝛼𝑡

)}
(89)

= 𝛼𝑡
𝑑

𝑑𝛼𝑡

{
𝑇𝑡

(
𝑠∗𝑡 (𝛼𝑡 )

)}
+ 𝑅−1𝛼𝑡

𝜕T𝑡+1 (𝑠𝑡 ,𝛼𝑡 )
𝜕𝛼𝑡

����
𝑠𝑡=𝑠

∗
𝑡 (𝛼𝑡 )

(90)

From the definition of T , again, we have:

T𝑡+1 (𝑠𝑡 ,𝛼𝑡 ) =
∫
𝛼𝑡+1

[
𝑇𝑡+1

(
𝑠∗
𝑡+1 (𝛼𝑡+1)

)
+ 𝑅−1T𝑡+2

(
𝑠∗
𝑡+1 (𝛼𝑡+1) ,𝛼𝑡+1

) ]
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (91)

So:

𝛼𝑡
𝜕T𝑡+1 (𝑠𝑡 ,𝛼𝑡 )

𝜕𝛼𝑡

����
𝑠𝑡=𝑠

∗
𝑡 (𝛼𝑡 )

=𝛼𝑡

∫
𝛼𝑡+1

[
𝑇𝑡+1

(
𝑠∗
𝑡+1 (𝛼𝑡+1)

)
+ 𝑅−1T𝑡+2

(
𝑠∗
𝑡+1 (𝛼𝑡+1) ,𝛼𝑡+1

) ] 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1 (92)

=

∫
𝛼𝑡+1

𝛼𝑡+1
𝑑

𝑑𝛼𝑡+1

[
𝑇𝑡+1

(
𝑠∗
𝑡+1 (𝛼𝑡+1)

)
+ 𝑅−1T𝑡+2

(
𝑠∗
𝑡+1 (𝛼𝑡+1) ,𝛼𝑡+1

) ]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (93)

=

∫
𝛼𝑡+1

{
𝛼𝑡+1

𝑑

𝑑𝛼𝑡+1

[
𝑇𝑡+1

(
𝑠∗
𝑡+1 (𝛼𝑡+1)

) ]
+ 𝛼𝑡+1

𝜕T𝑡+2 (𝑠𝑡+2,𝛼𝑡+1)
𝜕𝛼𝑡+1

����
𝑠𝑡+2=𝑠

∗
𝑡+2 (𝛼𝑡+1 )

}
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (94)

=E

[ ∞∑︁
𝑟=𝑡+1

𝑅𝑡+1−𝑟𝐷𝑡 ,𝑟 (𝛼𝑟 ) 𝛼𝑟
𝑑

𝑑𝛼𝑟

{
𝑇𝑟

(
𝑠∗𝑟 (𝛼𝑟 )

)}����� 𝑠𝑡−1,𝛼𝑡

]
(95)

where the last line uses the definition of 𝐷𝑡 ,𝑟 (𝛼𝑟 ). Combining this with (90), and using the normalisation 𝐷𝑡 ,𝑡
(
𝛼𝑡
)
=

1, gives the result.

A.7 Proof of Proposition 4

It is immediate that if (by normality) 𝑐∗𝑡+𝑠
(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑡+𝑠𝑡+1

)
is decreasing in 𝛼𝑡 for all 𝑡 ≥ 0, 𝑠 > 0, 𝛼𝑡−1 ∈ 𝐴𝑡 and

Π-almost all 𝛼𝑡+𝑠
𝑡+1 ∈ 𝐴𝑠 , and

{
𝑐∗𝑡

(
𝛼𝑡
)}

𝑡 ,𝛼𝑡 is incentive-compatible, then 𝑐∗𝑡
(
𝛼𝑡−1,𝛼𝑡

)
must be increasing in 𝛼𝑡 , strictly

except on ranges for 𝛼𝑡 where 𝑐∗𝑡+𝑠
(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑡+𝑠𝑡+1

)
is invariant in 𝛼𝑡 along Π-almost all future paths 𝛼𝑡+𝑠

𝑡+1.

Given this, we proceed constructively, showing how to map from the allocation
{
𝑐∗𝑡

(
𝛼𝑡
)}

𝑡 ,𝛼𝑡 to tax functions

𝑇𝑡
(
𝑠𝑡−1, 𝑠𝑡

)
, with the property every budget-feasible sequence of savings choices over time implies a consumption

sequence that is part of the target incentive-feasible allocation
{
𝑐∗𝑡

(
𝛼𝑡
)}

𝑡 ,𝛼𝑡 , and every consumption sequence from

the target allocation can be chosen via a feasible sequence of savings decisions. This implies that the menu of

choices at every history node under the decentralised allocation is the same as under the direct mechanism, and

so the decentralised scheme must implement the target allocation.
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First, set 𝑀0 equal the net-present value of resources per capita in period zero:

𝑀0 :=
∞∑︁
𝑡=0

𝑅−𝑡𝑦𝑡 (96)

For all 𝛼0, let the savings level 𝑠0 (𝛼0) then be defined by:

𝑠0 (𝛼0) := 𝑀0 − 𝑐∗0 (𝛼0) (97)

and denote the range of 𝑠0 values across 𝛼0 by 𝑆0:

𝑆0 := {𝑠0 (𝛼0)}𝛼0∈𝐴 (98)

Since consumption is increasing, the minimum value for savings is 𝑠0 (𝛼) and its maximum is 𝑠0
(
𝛼
)
, and so 𝑆0 ⊆[

𝑠0 (𝛼) , 𝑠0
(
𝛼
) ]

. We denote by 𝑆𝑐0 the complement of 𝑆0 in R.

For all 𝑠0 ∈ 𝑆𝑐0, let 𝑇0 (𝑠0) = 𝑠0, so that 𝑀1 (𝑠0) = 0, and for all 𝑡 > 0 and subsequent savings choices {𝑠1, ..., 𝑠𝑡 },

let 𝑇𝑡 (𝑠0, 𝑠1, ...𝑠𝑡 ) > 𝜀 for some 𝜀 > 0. Combining the budget constraints (23) and (24), we have, along all future

consumption paths:

0 = 𝑀1 (𝑠0) =
𝑇∑︁
𝑡=0

𝑅−𝑡 [𝑐𝑡+1 +𝑇𝑡+1 (𝑠0, ..., 𝑠𝑡+1)] + 𝑅−𝑇−2𝑀𝑇+2 (99)

and so:
𝑇∑︁
𝑡=0

𝑅−𝑡𝑐𝑡+1 = −
𝑇∑︁
𝑡=0

𝑅−𝑡𝑇𝑡+1 (𝑠0, ..., 𝑠𝑡+1) − 𝑅−𝑇−2𝑀𝑇+2 (100)

for all 𝑇 ≥ 0. By the ‘no Ponzi’ condition, the final term on the right-hand side satisfies lim𝑇→∞ 𝑅−𝑇−2𝑀𝑇+2 ≥ 0,

and so the positive bound on taxes implies that the right-hand side must be negative for large enough 𝑇 . But this

implies negative consumption in at least one period, which is not possible. It follows that 𝑠0 will not be chosen.

For the rest of the argument it helps to have a simple expression for the net-present value of future consump-

tion, under the direct mechanism. Denote by C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1) the following object:

C𝑡+1

(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1

)
= E

[ ∞∑︁
𝑠=𝑡+1

𝑅𝑡+1−𝑠𝑐∗𝑠

(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑠𝑡+1

)�����𝛼𝑡
]

(101)

That is, the expected NPV of consumption from 𝑡 + 1 onwards, given a period-𝑡 report of 𝛼𝑡 , a true period-𝑡 type

𝛼𝑡 , and past history 𝛼𝑡−1.
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For all 𝑠0 ∈ 𝑆0, let 𝑀1 (𝑠0) then be given by:

𝑀1 (𝑠0) :=C1 (𝛼0 (𝑠0) ,𝛼0 (𝑠0)) +
∫ 𝛼̄

𝛼0 (𝑠0 )

𝜕C1 (𝛼0,𝛼0)
𝜕𝛼0

����
𝛼̃0=𝛼0

𝑑𝛼0 (102)

where 𝛼0 (𝑠0) : 𝑆0 → R is the inverse of 𝑠0 (𝛼0). Where 𝑐∗0 (𝛼0) is strictly increasing, 𝛼0 (𝑠0) is singleton-valued.

For ranges of 𝛼0 where 𝑐∗0 (𝛼0) is only weakly increasing, it follows by incentive compatibility that 𝑐∗𝑠
(
𝛼0,𝛼𝑠1

)
is

stationary in 𝛼0 for Π-almost all 𝛼𝑠1 paths. Hence, at these values:

𝑑C1 (𝛼0,𝛼0)
𝑑𝛼0

=
𝜕C1 (𝛼0,𝛼0)

𝜕𝛼0

����
𝛼̃0=𝛼0

(103)

It follows that when multiple types choose the same savings value, they receive the same 𝑀1 (𝑠0) under formula

(102)

Given 𝑀1 (𝑠0), we then define 𝑇0 (𝑠0) by:

𝑇0 (𝑠0) := 𝑠0 − 𝑅−1𝑀1 (𝑠0) (104)

An inductive argument can then be applied for on-equilibrium choices. Fix 𝑡 > 0. Suppose that a mapping

from type history 𝛼𝑡−1 ∈ 𝐴𝑡 to savings history 𝑠𝑡−1 ∈ R𝑡 is known, denoted 𝑠𝑡−1 (𝛼𝑡−1) , with range 𝑆𝑡−1:

𝑆𝑡−1 :=
{
𝑠𝑡−1

(
𝛼𝑡−1

)}
𝛼𝑡−1∈𝐴𝑡

(105)

and that this mapping has an inverse correspondence𝛼𝑡−1 (𝑠𝑡−1) , with 𝛼𝑡−1 : 𝑆𝑡−1 → 𝐴𝑡 . For 𝑡 = 1,𝑆𝑡−1 = 𝑆0.

Suppose further that there is a known wealth level 𝑀𝑡

(
𝑠𝑡−1 (𝛼𝑡−1) ) corresponding to each 𝛼𝑡−1 ∈ 𝐴𝑡 . For all 𝛼𝑡 ∈ 𝐴,

let 𝑠𝑡
(
𝛼𝑡−1,𝛼𝑡

)
be given by:

𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

)
:= 𝑀𝑡

(
𝑠𝑡−1

(
𝛼𝑡−1

))
− 𝑐∗𝑡

(
𝛼𝑡−1,𝛼𝑡

)
(106)

By the increasingness of 𝑐∗𝑡 , 𝑠𝑡
(
𝛼𝑡
)

is decreasing in 𝛼𝑡 , with minimum 𝑠𝑡
(
𝛼𝑡−1,𝛼

)
and maximum 𝑠𝑡

(
𝛼𝑡−1,𝛼

)
. Denote

its range 𝑆𝑡
(
𝛼𝑡−1) :

𝑆𝑡

(
𝛼𝑡−1

)
:=

{
𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

)}
𝛼𝑡 ∈𝐴

(107)

Given 𝛼𝑡−1, the inverse 𝛼𝑡
(
𝑠𝑡 ;𝛼𝑡−1) gives the set of period-𝑡 types corresponding to savings choice 𝑠𝑡 , for any

𝑠𝑡 ∈ 𝑆𝑡
(
𝛼𝑡−1) . It is singleton-valued iff 𝑐∗𝑡

(
𝛼𝑡−1,𝛼𝑡

)
is strictly increasing in 𝛼𝑡 , which again follows except on 𝛼𝑡

ranges where 𝑐∗𝑠
(
𝛼𝑡−1,𝛼𝑡 ,𝛼𝑠𝑡+1

)
is constant in 𝛼𝑡 for Π-almost all 𝛼𝑠

𝑡+1, 𝑠 > 𝑡 . The mapping 𝑠𝑡
(
𝛼𝑡
)

is then given by
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extending 𝑠𝑡−1 (𝛼𝑡−1) :
𝑠𝑡

(
𝛼𝑡
)

:=
{
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

(
𝛼𝑡
)}

(108)

and 𝛼𝑡
(
𝑠𝑡
)

by:

𝛼𝑡
(
𝑠𝑡
)

:=
{
𝛼𝑡−1

(
𝑠𝑡−1

)
,𝛼𝑡

(
𝑠𝑡 ;𝛼𝑡−1

(
𝑠𝑡−1

))}
(109)

For all 𝑠𝑡 ∈ 𝑆𝑡
(
𝛼𝑡−1) , let 𝑀𝑡+1

(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

)
then be given by:

𝑀𝑡+1

(
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

)
:=C𝑡+1

(
𝛼𝑡

(
𝑠𝑡 ;𝛼𝑡−1

(
𝑠𝑡−1

))
,𝛼𝑡

(
𝑠𝑡 ;𝛼𝑡−1

(
𝑠𝑡−1

))
;𝛼𝑡−1

(
𝑠𝑡−1

))
(110)

+
∫ 𝛼̄

𝛼𝑡 (𝑠𝑡 ;𝛼𝑡−1 (𝑠𝑡−1))
𝜕C𝑡+1

(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1 (𝑠𝑡−1) )

𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

where we again use the fact that if 𝑐∗𝑡 is constant on a range of 𝛼𝑡 values, then:

𝑑C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝑑𝛼𝑡

=
𝜕C𝑡+1

(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

(111)

on this range. This leaves the tax function 𝑇𝑡
(
𝑠𝑡−1, 𝑠𝑡

)
to be given by:

𝑇𝑡

(
𝑠𝑡−1, 𝑠𝑡

)
:= 𝑠𝑡 − 𝑅−1𝑀𝑡+1

(
𝑠𝑡−1, 𝑠𝑡

)
(112)

for all 𝑠𝑡 ∈ 𝑆𝑡
(
𝛼𝑡−1 (𝑠𝑡−1) ) .

As in period-zero, we need to to rule out allocation choices that do not feature under the direct mechanism.

Denote by 𝑆𝑐𝑡
(
𝛼𝑡−1) the complement of 𝑆𝑡

(
𝛼𝑡−1) in R, and for all 𝑠𝑡 ∈ 𝑆𝑐𝑡

(
𝛼𝑡−1 (𝑠𝑡−1) ) , set 𝑇𝑡

(
𝑠𝑡−1, 𝑠𝑡

)
equal to 𝑠𝑡 . For

all 𝑟 > 𝑡 , set 𝑇𝑡
(
𝑠𝑡−1, 𝑠𝑡 , ..., 𝑠𝑟

)
> 𝜀 for some 𝜀 > 0. Again, this implies that choosing 𝑠𝑡 is inconsistent with satisfying

the no-Ponzi condition.

Any allocation that is not part of the direct mechanism must impliy a saving choice 𝑠𝑡 ∈ 𝑆𝑐𝑡
(
𝛼𝑡−1 (𝑠𝑡−1) ) at some

history node that violates the agent’s no-Ponzi condition, and so the decentralised allocation does not permit a

greater set of options than the direct mechanism. To show that the decentralised allocation provides no fewer

options, we must confirm that the no-Ponzi condition is satisfied by the induced value of 𝑀𝑡 , for all admissible

sequences of type reports in the centralised scheme. For this, note that for all 𝑡 , 𝛼𝑡−1:

𝑀𝑡+1

(
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

(
𝛼𝑡−1,𝛼

))
= C𝑡+1

(
𝛼 ,𝛼 ;𝛼𝑡−1

)
≥ 0 (113)

Thus a sufficient condition for𝑀𝑡+1 always to be positive is that𝑀𝑡+1
(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

) )
should be decreasing
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in 𝛼𝑡 . For any pait of types 𝛼 ′′𝑡 > 𝛼 ′𝑡 , we have:

𝑀𝑡+1

(
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

))
−𝑀𝑡+1

(
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

))
(114)

=C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′′𝑡 ;𝛼𝑡−1

)
− C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′
𝑡 ;𝛼

𝑡−1
)
−
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

𝜕C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

=

[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′′𝑡 ;𝛼𝑡−1

)
− C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′′
𝑡 ;𝛼𝑡−1

)]
+
[
C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′′
𝑡 ;𝛼𝑡−1

)
− C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′
𝑡 ;𝛼

𝑡−1
)]

(115)

−
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

𝜕C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

=

[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′𝑡 ;𝛼

𝑡−1
)
− C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′
𝑡 ;𝛼

𝑡−1
)]

+
[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′′𝑡 ;𝛼𝑡−1

)
− C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′𝑡 ;𝛼

𝑡−1
)]

(116)

−
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

𝜕C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

Since C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1) is monotone increasing in its first argument, it can be discontinuous at at most countably

many values for 𝛼𝑡 , and these values are independent of 𝛼𝑡 by the continuity of 𝜋 (Assumption 2). It follows that

either:

lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′′
𝑡 ;𝛼𝑡−1) − C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′
𝑡 ;𝛼

𝑡−1)
𝛼 ′′𝑡 − 𝛼 ′𝑡

]
= lim

𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
1

𝛼 ′′𝑡 − 𝛼 ′𝑡

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

𝜕C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

]
(117)

or:

lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′′𝑡 ;𝛼𝑡−1) − C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′𝑡 ;𝛼

𝑡−1)
𝛼 ′′𝑡 − 𝛼 ′𝑡

]
= lim

𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
1

𝛼 ′′𝑡 − 𝛼 ′𝑡

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

𝜕C𝑡+1
(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

𝑑𝛼𝑡

]
(118)

or both. Thus either:

lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
𝑀𝑡+1

(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

) )
−𝑀𝑡+1

(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

) )
𝛼 ′′𝑡 − 𝛼 ′𝑡

]
(119)

= lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′′𝑡 ;𝛼𝑡−1) − C𝑡+1

(
𝛼 ′𝑡 ,𝛼

′′
𝑡 ;𝛼𝑡−1)

𝛼 ′′𝑡 − 𝛼 ′𝑡

]
≤ 0

or:

lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
𝑀𝑡+1

(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′′𝑡

) )
−𝑀𝑡+1

(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼 ′𝑡

) )
𝛼 ′′𝑡 − 𝛼 ′𝑡

]
(120)

= lim
𝛼 ′′
𝑡 →𝛼 ′

𝑡

[
C𝑡+1

(
𝛼 ′′𝑡 ,𝛼 ′𝑡 ;𝛼

𝑡−1) − C𝑡+1
(
𝛼 ′𝑡 ,𝛼

′
𝑡 ;𝛼

𝑡−1)
𝛼 ′′𝑡 − 𝛼 ′𝑡

]
≤ 0
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were the inequalities follow from the normality assumption. It follows that 𝑀𝑡+1
(
𝑠𝑡−1 (𝛼𝑡−1) , 𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

) )
is indeed

decreasing in 𝛼𝑡 .

It follows that the decentralisation provides the same choice set as the direct mechanism at all nodes, and so

will implement it. It remains only to confirm that the normalisations (28) and (29) are satisfied by the proposed

construction. For this, note from (26) that:

𝑀𝑡+1

(
𝑠𝑡−1

(
𝛼𝑡−1

)
, 𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

))
= C𝑡+1

(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1

)
+ T𝑡+1

(
𝑠𝑡

(
𝛼𝑡−1,𝛼𝑡

)
,𝛼𝑡 ; 𝑠𝑡−1

(
𝛼𝑡−1

))
(121)

Normalisation (29) is thus an immediate consequence of (113). Taking a partial derivative with respect to true

type, we also have:
𝜕C𝑡+1

(
𝛼𝑡 ,𝛼𝑡 ;𝛼𝑡−1)
𝜕𝛼𝑡

�����
𝛼̃𝑡=𝛼𝑡

= −
𝜕T𝑡+1

(
𝑠𝑡 ,𝛼𝑡 ; 𝑠𝑡−1 (𝛼𝑡−1) )

𝜕𝛼𝑡

�����
𝑠𝑡=𝑠𝑡 (𝛼𝑡−1,𝛼𝑡 )

(122)

Using this and (121) in (102) and (110) shows that these latter two conditions are equivalent to imposing (28) for

the first and subsequent periods.

A.8 Corollary 2: details

Monotonicity of 𝑐𝑡 (𝛼𝑡 ) implies that 𝑐𝑡 (𝛼𝑡 ) is continuous a.e.. Suppose it is continuous on some open interval

(𝛼 ′,𝛼 ′′) ⊂
[
𝛼 ,𝛼

]
, and write 𝑐′ = lim𝛼↘𝛼 ′ (𝑐𝑡 (𝛼)) and 𝑐′′ = lim𝛼↗𝛼 ′′ (𝑐𝑡 (𝛼)) (i.e. limits as 𝛼 approaches from above

and below respectively). Integrating (17) across this range gives:

∫ 𝑐′′

𝑐′

{∫ 𝛼̄

𝛼𝑡 (𝑐𝑡 )

[
1

𝑢′ (𝑐𝑡 (𝛼))
−
𝛼
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋 (𝛼 |𝛼𝑡−1) 𝑑𝛼

}
𝑑𝑢′ (𝑐𝑡 )
𝑑𝑐𝑡

𝑑𝑐𝑡 (123)

= −
∫ 𝑐′′

𝑐′
(𝛼𝑡 (𝑐𝑡 .))2

{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

}
𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

𝑑𝑢′ (𝑐𝑡 )
𝑑𝑐𝑡

𝑑𝑐𝑡
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Integrating the left-hand side by parts, we have:

∫ 𝑐′′

𝑐′

{∫ 𝛼̄

𝛼𝑡 (𝑐𝑡 )

[
1

𝑢′ (𝑐𝑡 (𝛼))
−
𝛼
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋 (𝛼 |𝛼𝑡−1) 𝑑𝛼

}
𝑑𝑢′ (𝑐𝑡 )
𝑑𝑐𝑡

𝑑𝑐𝑡

=

[{∫ 𝛼̄

𝛼𝑡 (𝑐𝑡 )

[
1

𝑢′ (𝑐𝑡 (𝛼))
−
𝛼
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋 (𝛼 |𝛼𝑡−1) 𝑑𝛼

} {∫ 𝑐𝑡

𝑐′

𝑑𝑢′ (𝑐)
𝑑𝑐

𝑑𝑐

}]𝑐′′
𝑐𝑡=𝑐

′

+
∫ 𝑐′′

𝑐′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

] [∫ 𝑐𝑡

𝑐′

𝑑𝑢′ (𝑐)
𝑑𝑐

𝑑𝑐

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

=

∫ 𝛼̄

𝛼 ′′

[
1

𝑢′ (𝑐𝑡 (𝛼))
−
𝛼
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋 (𝛼 |𝛼𝑡−1) 𝑑𝛼 [𝑢′ (𝑐′′) −𝑢′ (𝑐′)]

+
∫ 𝑐′′

𝑐′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
[𝑢′ (𝑐𝑡 ) −𝑢′ (𝑐′)]

𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

=

∫ 𝑐

𝑐′′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡 (𝑢′ (𝑐′′) −𝑢′ (𝑐′))

+
∫ 𝑐′′

𝑐′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
[𝑢′ (𝑐𝑡 ) −𝑢′ (𝑐′)]

𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

=

∫ 𝑐′′

𝑐′

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

+𝑢′ (𝑐′′)
∫ 𝑐

𝑐′′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

−𝑢′ (𝑐′)
∫ 𝑐

𝑐′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

where the strict normality assumption guarantees that 𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

is defined a.e.. Note also that:

𝜋𝑐
(
𝑐𝑡 |𝛼𝑡−1

)
:=
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

is a measure of the empirical density of consumption at 𝑐𝑡 , across types with the given history, defined a.e..
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The main condition thus becomes:∫ 𝑐′′

𝑐′

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡 (124)

+𝑢′ (𝑐′′)
∫ 𝑐

𝑐′′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

−𝑢′ (𝑐′)
∫ 𝑐

𝑐′

[
1

𝑢′ (𝑐𝑡 )
−
𝛼𝑡 (𝑐𝑡 )

{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼 |𝛼𝑡−1)

}
𝜂𝑡

]
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

= −
∫ 𝑐′′

𝑐′
(𝛼𝑡 (𝑐𝑡 .))2 𝑢′′ (𝑐𝑡 )

{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

}
𝜋 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝑑𝑐𝑡

Suppose first that there are no discontinuities in 𝑐𝑡 (𝛼𝑡 ). Making use of (68), over the entire range (124) gives:

∫ 𝑐

𝑐

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡 (125)

+
∫ 𝑐

𝑐

(𝛼𝑡 (𝑐𝑡 .))2 𝑢′′ (𝑐𝑡 )
{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

} (
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1

𝜋𝑐
(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡

=0

And for each 𝑐′ ∈
(
𝑐, 𝑐

)
, making use of (75):

∫ 𝑐

𝑐′

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡 (126)

+ (𝛼𝑡 (𝑐′))2
𝑢′ (𝑐′) 𝜋𝑐

(
𝑐′ |𝛼𝑡−1

) (𝑑𝛼𝑡 (𝑐′)
𝑑𝑐′

)−1
{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐

′))
𝜂𝑡

− 𝜌 (𝛼𝑡 (𝑐′) |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

}
+
∫ 𝑐

𝑐′
(𝛼𝑡 (𝑐𝑡 .))2 𝑢′′ (𝑐𝑡 )

{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

} (
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1

𝜋𝑐
(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡

=0

as given in the text.

A.8.1 Allowing discontinuities

Discontinuities in 𝑐𝑡 (𝛼𝑡 ) can be included with minimal additional manipulation. Since 𝑐𝑡 (𝛼𝑡 ) is monotone, the

set of 𝛼𝑡 values at which it is discontinuous is at most countable. Denote this set A ⊂ 𝐴, and for all 𝛼𝑡 ∈ A

let 𝑐𝑢 (𝛼𝑡 ) = lim𝛼↘𝛼𝑡 (𝑐𝑡 (𝛼)) and 𝑐𝑙 (𝛼𝑡 ) = lim𝛼↗𝛼𝑡 (𝑐𝑡 (𝛼)) denote the upper and lower limits for consumption
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respectively. Summing (124) across intervals, over the entire range we have:

∫ 𝑐

𝑐

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡 (127)

+
∑︁
𝛼𝑡 ∈A

(
𝑢′ (𝑐𝑢 (𝛼𝑡 )) −𝑢′

(
𝑐𝑙 (𝛼𝑡 )

))
𝜋 (𝛼𝑡 |𝛼𝑡−1) (𝛼𝑡 )2

{
𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

− 𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

}
+
∫ 𝑐′′

𝑐′
(𝛼𝑡 (𝑐𝑡 .))2 𝑢′′ (𝑐𝑡 )

{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

}
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡

=0

And for each 𝑐′ ∈
(
𝑐, 𝑐

)
:

∫ 𝑐

𝑐′

[
1 −

𝛼𝑡 (𝑐𝑡 ) 𝑢′ (𝑐𝑡 )
{
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1)

}
𝜂𝑡

]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡 (128)

+
∑︁

𝛼𝑡 ∈A∩(𝛼𝑡 (𝑐′ ) ,𝛼̄ )

(
𝑢′ (𝑐𝑢 (𝛼𝑡 )) −𝑢′

(
𝑐𝑙 (𝛼𝑡 )

))
𝜋 (𝛼𝑡 |𝛼𝑡−1) (𝛼𝑡 )2

{
𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

− 𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

}
+ (𝛼𝑡 (𝑐′))2

𝑢′ (𝑐′) 𝜋𝑐
(
𝑐′ |𝛼𝑡−1

) (𝑑𝛼𝑡 (𝑐′)
𝑑𝑐′

)−1
{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐

′))
𝜂𝑡

− 𝜌 (𝛼𝑡 (𝑐′) |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

}
+
∫ 𝑐

𝑐′
(𝛼𝑡 (𝑐𝑡 .))2 𝑢′′ (𝑐𝑡 )

{
𝜆Δ
𝑡+1 (𝛼𝑡 (𝑐𝑡 ))

𝜂𝑡
− 𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

} (
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1

𝜋𝑐
(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡

=0

A.9 Definitions of 𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) and 𝑑𝑠𝑡−1

𝑑𝑀𝑡

���
comp

𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) is defined formally by reference to the Fréchet derivative of 𝑠𝑡−1, with respect to an arbitrary profile of

changes to the tax schedule in 𝑡 . These perturbations are defined pointwise at each value for 𝑀𝑡+1, so that the

change in total taxes at a given 𝑀𝑡+1 corresponds directly to the available change in period-𝑡 consumption if 𝑀𝑡+1

is held constant – i.e., to the size of the period-𝑡 income effect for agents at the chosen 𝑀𝑡+1.

I first present the general approach to perturbing the tax schedule. Let 𝑠 (𝑀𝑡+1) be the level of period-𝑡 sav-

ings corresponding to 𝑡 + 1 wealth level 𝑀𝑡+1 under the chosen allocation, uniquely defined if the assumptions of

Proposition 4, required for the decentralisation to work, are satisfied. This function is defined implicitly by:

𝑀𝑡+1 = 𝑅 [𝑠 (𝑀𝑡+1) −𝑇 (𝑠 (𝑀𝑡+1))] (129)
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Notice that:

𝑠′ (𝑀𝑡+1) =
1

𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1)))
(130)

That is, the derivative of 𝑠 (𝑀𝑡+1) gives the localised period-𝑡 cost of an extra unit of 𝑡 + 1 resources.

Suppose that for each choice of 𝑀𝑡+1, the tax schedule is perturbed to:42

𝑇𝑡 (𝑠 (𝑀𝑡+1)) − Γ𝑓 (𝑠 (𝑀𝑡+1)) (131)

where Γ ∈ R and 𝑓 (·) is an arbitrary bounded, differentiable function on the interval of realised savings. Using

the intertemporal budget constraint (24), continued choice of 𝑀𝑡+1implies a savings level 𝑠𝑡 that satisfies:

𝑀𝑡+1 = 𝑅 [𝑠𝑡 −𝑇𝑡 (𝑠 (𝑀𝑡+1)) + Γ𝑓 (𝑠 (𝑀𝑡+1))] (132)

Combining with (129), this implies that realising 𝑀𝑡+1 requires savings equal to:

𝑠𝑡 = 𝑠 (𝑀𝑡+1) − Γ𝑓 (𝑠 (𝑀𝑡+1)) (133)

and thus consumption equal to:

𝑐𝑡 = 𝑀𝑡 − 𝑠 (𝑀𝑡+1) + Γ𝑓 (𝑠 (𝑀𝑡+1)) (134)

= 𝑐 (𝑀𝑡+1) + Γ𝑓 (𝑠 (𝑀𝑡+1))

where 𝑐 (𝑀𝑡+1) is the consumption corresponding to 𝑀𝑡+1 in the unperturbed allocation. Thus, holding constant

𝑀𝑡+1, the perturbation allows an increase in 𝑐𝑡 by 𝑓 (𝑠 (𝑀𝑡+1)) units per unit increase in Γ.

The derivative of savings with respect to 𝑀𝑡+1 is:

𝑑𝑠𝑡

𝑑𝑀𝑡+1
= 𝑠′ (𝑀𝑡+1) (1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+1))) =

1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+1))
𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1)))

(135)

The inverse of this is the rate of return on savings when 𝑀𝑡+1 is the realised wealth level in 𝑡 + 1:

[
𝑑𝑠𝑡

𝑑𝑀𝑡+1

]−1

=
𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1)))

1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+1))
(136)

42Defining the perturbations as functions of 𝑀𝑡+1 rather than 𝑠𝑡 ensures that 𝑓 (·) defines the ‘rightward’ shift in the budget
constraint linking 𝑐𝑡 to 𝑀𝑡+1, and so 𝑓 (·) corresponds to the magnitude of the income effect, in units of period-𝑡 income. This
allows for a simplecharacterisation of 𝜖𝑠

𝑡−1,𝑡 (𝑠𝑡 ) by reference to income and substitution effects at 𝑡 , and the impact these have
on information rents.
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The derivative of this with respect to Γ is:

𝑑

𝑑Γ

{[
𝑑𝑠𝑡

𝑑𝑀𝑡+1

]−1
}
=
𝑓 ′ (𝑠 (𝑀𝑡+1)) 𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1)))

[1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+1))]2 (137)

and locally when Γ = 0, this gives:

𝑑

𝑑Γ

{[
𝑑𝑠𝑡

𝑑𝑀𝑡+1

]−1
}�����

Γ=0

= 𝑓 ′ (𝑠 (𝑀𝑡+1)) 𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1)))

That is, a marginal increase in Γ from zero changes the post-tax rate of return at𝑀𝑡+1 by 𝑓 ′ (𝑠 (𝑀𝑡+1)) 𝑅 (1 −𝑇 ′ (𝑠 (𝑀𝑡+1))).

Thus the value of 𝑓 ′ (𝑠 (𝑀𝑡+1)) corresponds to the proportional change in the slope of the intertemporal budget con-

straint at 𝑀𝑡+1.

The proof of Lemma 3, below, establishes that the compensated derivative of 𝑠𝑡−1 with respect to Γ, evaluated

at Γ = 0, will be linear in 𝑓 ′ (𝑠𝑡 ).43 That is:

𝑑𝑠𝑡−1

𝑑Γ

����
Γ=0, comp

= 𝑓
(
𝑠
)
𝐻 +

∫
𝑠𝑡

𝑓 ′ (𝑠𝑡 ) ℎ (𝑠𝑡 ) 𝑑𝑠𝑡 (138)

with the function ℎ (𝑠𝑡 ) and scalar 𝐻 independent of the choice of 𝑓 (·). Since 𝑓 ′ (𝑠𝑡 ) is precisely the proportional

increase in the rate of return on 𝑠𝑡 per unit change in Γ, it suffices to normalise:

ℎ (𝑠𝑡 ) := 𝑠𝑡−1𝜖
𝑠
𝑡−1,𝑡 (𝑠𝑡 )

(
1 − Π𝑠

(
𝑠𝑡 |𝑠𝑡−1

))
(139)

where Π𝑠
(
𝑠𝑡 |𝑠𝑡−1) is the induced measure of savings in 𝑡 , given history of savings 𝑠𝑡−1. This implicitly defines

𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ). Thus, the aggregate change in 𝑠𝑡−1 induced by an arbitrary change to marginal tax rates at 𝑡 is, by

definition, the integral of the changes induced piecewise by tax cuts at each point, and 𝜖𝑠
𝑡−1,𝑡 (𝑠𝑡 ) is constructed to

capture the response at each point.

The compensated income effect 𝑑𝑠𝑡−1
𝑑𝑀𝑡

���
comp

is defined as the derivative 𝑑𝑠𝑡−1
𝑑Γ

���
Γ=0, comp

in the simpler case where

the perturbation schedule satisfies 𝑓 (𝑠 (𝑀𝑡+1)) = 1 for all realised 𝑀𝑡+1 values. It is thus equated to 𝐻 in (138).

A.10 Proof of Lemma 3

Conditions 1 and 2

We start with two Lemmata:
43This is established formally in the proof of Lemma 3: c.f. equation (171) below.
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Lemma 5. The marginal tax rate satisfies:

𝑇 ′
𝑡 (𝑠 (𝛼𝑡 )) =

𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

{
𝛼𝑡𝑢

′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

}
where 𝑉𝑀 (𝑀𝑡+1;𝛼𝑡+1) denotes the marginal increase in lifetime utility in 𝑡 + 1 when 𝑀𝑡+1 is increased at the margin, given

type draw 𝛼𝑡+1.

Proof. Recall that the decentralisation in Proposition 4 sets the value of 𝑀𝑡

(
𝛼𝑡−1) equal to the expected present

value of consumption from 𝑡 onwards, for agents with history 𝛼𝑡−1:

𝑀𝑡

(
𝛼𝑡−1

)
= E

[ ∞∑︁
𝑟=𝑡

𝑅𝑡−𝑟𝑐𝑟 (𝛼𝑟 )
�����𝛼𝑡−1

]
By definition, the marginal tax rate on savings is the net revenue raised by the policymaker, per unit, when savings

are increased by a unit at the margin. Since the agent is optimising, a marginal change to savings relative to the op-

timum leaves them indifferent. Thus the marginal tax rate can be obtained from the optimal direct allocation as the

difference between the marginal cost to the policymaker of providing resources in 𝑡 , and the (discounted) shadow

marginal resource cost of providing the utility increase implied by a unit increase in savings. By construction,

savings raise period-𝑡 + 1 lifetime utility 𝜔𝑡+1 at the margin by the amount:

𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

and raise 𝜔Δ
𝑡+1 by the amount:

𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

The marginal resource cost of increasing 𝜔𝑡+1 by a unit at the margin will be the relevant shadow cost from the

cost-minimisation dual. By standard arguments, an expression for this is obtained by dividing the marginal value

of an increase to 𝜔𝑡+1 in the main problem by the resource multiplier:

𝛽𝑡+1 (1 + 𝜆𝑡+1
(
𝛼𝑡
) )

𝜂

Similarly, the marginal resource cost of increasing 𝜔Δ
𝑡+1 by a unit is:

𝛽𝑡+1𝜆Δ
𝑡+1

(
𝛼𝑡
)

𝜂
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The direct marginal resource gain from a unit increase in savings in period 𝑡 is 𝑅−𝑡 , and this is also the relative

value of a unit of tax revenue from that period. Combining, we thus have:

𝑅−𝑡𝑇 ′
𝑡 (𝑠𝑡 ) =𝑅−𝑡 −

𝛽𝑡+1 (1 + 𝜆𝑡+1
(
𝛼𝑡
) )

𝜂
𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

−
𝛽𝑡+1𝜆Δ

𝑡+1

(
𝛼𝑡
)

𝜂
𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

Or:

𝑇 ′
𝑡 (𝑠𝑡 ) =1 −

(
1 + 𝜆𝑡+1

(
𝛼𝑡
) )

𝜂 (𝛽𝑅)−𝑡−1

(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

−
𝜆Δ
𝑡+1

(
𝛼𝑡
)

𝜂 (𝛽𝑅)−𝑡−1

(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

Expressions for (1+𝜆𝑡+1 (𝛼𝑡 ))
𝜂𝑡

and
𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

, with 𝜂𝑡 = 𝜂 (𝛽𝑅)−𝑡 , follow from (71) and (72) respectively:

1 + 𝜆𝑡+1
(
𝛼𝑡
)

𝜂𝑡
=

1
1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E [𝛼𝑡+1 |𝛼𝑡 ]
E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ] − 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))

}
(140)

𝜆Δ
𝑡+1

(
𝛼𝑡
)

𝜂𝑡
=

1
1 − 𝜀𝛼 (𝛼𝑡 )

{
1

𝛼𝑡𝑢
′ (𝑐𝑡 (𝛼𝑡 ))

− 1
E [𝛼𝑡+1 |𝛼𝑡 ]

E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ]} (141)

Substituting in (140) gives:

𝑇 ′
𝑡 (𝑠𝑡 ) =1 − 1

1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E [𝛼𝑡+1 |𝛼𝑡 ]
E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ] − 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))

}
· 𝛼𝑡𝑢′

(
𝑐𝑡

(
𝛼𝑡
) )

−
𝜆Δ
𝑡+1

(
𝛼𝑡
)

𝜂𝑡
𝛽𝑅

(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

where we have used the consumer optimality condition:

𝛼𝑡𝑢
′ (𝑐𝑡 (𝛼𝑡 ) ) = 𝛽𝑅 (

1 −𝑇 ′
𝑡 (𝑠𝑡 )

) ∫
𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1
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Rearranging the first line:

1 − 1
1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E [𝛼𝑡+1 |𝛼𝑡 ]
E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ] − 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))

}
· 𝛼𝑡𝑢′

(
𝑐𝑡

(
𝛼𝑡
) )

= − 1
1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E [𝛼𝑡+1 |𝛼𝑡 ]
E

[
1

𝛽𝑅𝑢′
(
𝑐𝑡+1

(
𝛼𝑡+1

) ) ����𝛼𝑡 ] − 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))
− (1 − 𝜀𝛼 (𝛼𝑡 ))
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))

}
· 𝛼𝑡𝑢′

(
𝑐𝑡

(
𝛼𝑡
) )

=
𝜆Δ
𝑡+1

(
𝛼𝑡
)

𝜂𝑡
· 𝛼𝑡𝑢′

(
𝑐𝑡

(
𝛼𝑡
) )

So:

𝑇 ′
𝑡 (𝑠 (𝛼𝑡 )) =

𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

{
𝛼𝑡𝑢

′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

}
as stated. □

Lemma 6. The contemporaneous income effect and labour supply elasticity satisfy, respectively:

{
𝛼𝑡𝑢

′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

}−1

= −
𝑑𝑠𝑡
𝑑𝑀𝑡

𝛼2
𝑡 𝑢

′′ (𝑐𝑡 ) 𝑑𝑐𝑡
𝑑𝛼𝑡

(142){
𝛼𝑡𝑢

′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

}−1

=
𝑠𝑡𝜀

𝑠
𝑡

𝛼2
𝑡 𝑢

′ (𝑐𝑡 ) 𝑑𝑐𝑡
𝑑𝛼𝑡

(143)

Proof. Start with (142). Given the decentralised scheme, and holding constant actions prior to 𝑡 , consider a joint

marginal change to 𝛼𝑡 and 𝑀𝑡 would leave 𝑠𝑡 constant for an optimising individual. From the budget constraint,

this implies setting a value for 𝑑𝑀𝑡

𝑑𝛼𝑡
such that:

𝑑𝑐𝑡

𝑑𝛼𝑡
+ 𝑑𝑐𝑡

𝑑𝑀𝑡

𝑑𝑀𝑡

𝑑𝛼𝑡
=
𝑑𝑀𝑡

𝑑𝛼𝑡
(144)

where 𝑑𝑐𝑡
𝑑𝛼𝑡

and 𝑑𝑐𝑡
𝑑𝑀𝑡

denote optimal responses. So long as 𝑑𝑐𝑡
𝑑𝑀𝑡

≠ 1, this is possible. But since the consumer optimality

condition is:

𝛼𝑡𝑢
′ (𝑐𝑡 ) = 𝛽𝑅 (1 −𝑇 ′ (𝑠𝑡 ))

∫
𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (145)

then so long as the right-hand side is defined, we could only have 𝑑𝑐𝑡
𝑑𝑀𝑡

= 1 (implying 𝑑𝑠𝑡
𝑑𝑀𝑡

= 0) in the quasilinear

case 𝑢′′ (𝑐𝑡 ) = 0, which has been ruled out by primitive assumptions.

Differentiating (145) with respect to 𝛼𝑡 , given constant savings, yields:

𝑢′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1)
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1 + 𝛼𝑡𝑢′′ (𝑐𝑡 )

[
𝑑𝑐𝑡

𝑑𝛼𝑡
+ 𝑑𝑐𝑡

𝑑𝑀𝑡

𝑑𝑀𝑡

𝑑𝛼𝑡

]
= 0

𝑢′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1)
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1 + 𝛼𝑡𝑢′′ (𝑐𝑡 )

𝑑𝑀𝑡

𝑑𝛼𝑡
= 0
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Rearranging (144):

𝑑𝑀𝑡

𝑑𝛼𝑡
=

𝑑𝑐𝑡
𝑑𝛼𝑡

1 − 𝑑𝑐𝑡
𝑑𝑀𝑡

=

𝑑𝑐𝑡
𝑑𝛼𝑡

𝑑𝑠
𝑑𝑀𝑡

Plugging this into the previous expression, trivial manipulations give (142).

Reasoning in a similar way for (143), consider the effect of a change to
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)

at the margin, for an agent

saving at 𝑠𝑡 , coupled with a change to 𝑀𝑡 that holds constant period-𝑡 consumption. That is, set 𝑑𝑀𝑡

𝑑 (1−𝑇 ′ (𝑠𝑡 ) ) to solve:

𝑑𝑐𝑡

𝑑 (1 −𝑇 ′ (𝑠𝑡 ))
+ 𝑑𝑐𝑡

𝑑𝑀𝑡

𝑑𝑀𝑡

𝑑 (1 −𝑇 ′ (𝑠𝑡 ))
=

𝑑𝑀𝑡

𝑑 (1 −𝑇 ′ (𝑠𝑡 ))
(146)

Differentiating (145) with respect to
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)

under this joint change gives:

−𝛽𝑅
∫
𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 + 𝛼𝑡𝑢′′ (𝑐𝑡 )
[

𝑑𝑐𝑡

𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) + 𝑑𝑐𝑡

𝑑𝑀𝑡

𝑑𝑀𝑡

𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ] = 0

−𝛼𝑡𝑢′ (𝑐𝑡 )
1

1 −𝑇 ′
𝑡 (𝑠𝑡 )

+ 𝛼𝑡𝑢′′ (𝑐𝑡 )
𝑑𝑐𝑡

𝑑 (1−𝑇 ′
𝑡 (𝑠𝑡 ))

𝑑𝑠𝑡
𝑑𝑀𝑡

= 0

Rearranging, and noting 𝑑𝑐𝑡

𝑑 (1−𝑇 ′
𝑡 (𝑠𝑡 )) = − 𝑑𝑠𝑡

𝑑 (1−𝑇 ′
𝑡 (𝑠𝑡 )) :

𝑠𝑡𝜀
𝑠
𝑡

𝑢′ (𝑐𝑡 )
= −

𝑑𝑠𝑡
𝑑𝑀𝑡

𝑢′′ (𝑐𝑡 )

and so (143) follows, given (142). □

Combining the results in these two sub-Lemmata immediately delivers the first two statements in the main

Lemma.

Conditions 3 and 4

The third statement relates the change in savings at 𝑡 to compensated changes in the profile of insurance at 𝑡 + 1. It

is obtained by constructing offsetting perturbations to the marginal value of saving, based on two expressions for

this object that are true in any decentralised allocation. First, from the consumer optimality condition:

𝛼𝑡𝑢
′ (𝑐𝑡 ) = 𝛽𝑅

(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (147)
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Second, differentiating the relaxed incentive constraint:

𝛼𝑡𝑢
′ (𝑐𝑡 )

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

+𝑢 (𝑐𝑡 ) + 𝛽
𝑑𝜔𝑡+1 (𝛼𝑡 )

𝑑𝛼𝑡
= 𝑢 (𝑐𝑡 ) + 𝛽

1
𝛼𝑡
𝜔Δ
𝑡+1 (𝛼𝑡 )

or:

𝛼𝑡𝑢
′ (𝑐𝑡 ) =

1
𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

𝛽

{
1
𝛼𝑡
𝜔Δ
𝑡+1 (𝛼𝑡 ) −

𝑑𝜔𝑡+1 (𝛼𝑡 )
𝑑𝛼𝑡

}
(148)

The right-hand sides of (147) and (148) thus give alternative expressions for the shadow value of savings at the

chosen allocation. Denote this object 𝛾𝑡 (𝛼𝑡 ), i.e.:

𝛾𝑡 (𝛼𝑡 ) :=𝑅
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (149)

=
1

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

𝛽

{
1
𝛼𝑡
𝜔Δ
𝑡+1 (𝛼𝑡 ) −

𝑑𝜔𝑡+1 (𝛼𝑡 )
𝑑𝛼𝑡

}
(150)

Suppose we are interested in the response of 𝑐𝑡 (𝛼𝑡 ) to a generic change in the consumer’s constraint set Δ𝑖 . We

have:

𝛼𝑡𝑢
′′ (𝑐𝑡 (𝛼𝑡 ))

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ𝑖

=
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑖

(151)

Consider two such changes, Δ𝑖 and Δ 𝑗 , plus a scalar Γ, with the property:

𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑖

+ Γ
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

= 0 (152)

Using (152) in (151):
𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ𝑖

+ Γ
𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

= 0 (153)

So long as the perturbations Δ𝑖 and Δ 𝑗 are constructed to leave 𝑀𝑡 unaffected, this last result in turn implies:

𝑑𝑠𝑡 (𝛼𝑡 )
𝑑Δ𝑖

+ Γ
𝑑𝑠𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

= 0 (154)

and so
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑖

+ Γ
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

=
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑖

����
𝑠𝑡 ,𝑐𝑡

+ Γ
𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

����
𝑠𝑡 ,𝑐𝑡

= 0 (155)
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– the notation on the right-hand side denoting that the derivative can be taken under the greatly simplifying

assumption of fixed savings and consumption in 𝑡 . For any pair of differential changes, (151) gives:

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ𝑖

= −Γ𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

=

𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑖

���
𝑠𝑡

𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Δ𝑗

���
𝑠𝑡

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑Δ 𝑗

(156)

We now take the derivatives of 𝛾𝑡 (𝛼𝑡 ) for two changes to the consumer’s budget constraint, as viewed in 𝑡 . The

first is a simple change to contemporaneous post-tax returns,
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
)
. From (149):

𝑑𝛾𝑡 (𝛼𝑡 )
𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ����
𝑠𝑡

=
1

1 −𝑇 ′
𝑡 (𝑠𝑡 )

𝛾𝑡 (𝛼𝑡 )

=
1

1 −𝑇 ′
𝑡 (𝑠𝑡 )

𝛼𝑡𝑢
′ (𝑐𝑡 ) (157)

The second change is a more general perturbation to the nonlinear budget constraint in 𝑡 + 1, compensated so that

𝜔𝑡+1 is left unaffected. This budget constraint can be rewritten as follows:

𝑐𝑡+1 = 𝑀𝑡+1 − 𝑠 (𝑀𝑡+2) (158)

where 𝑠 (𝑀𝑡+2) is defined implicitly for all realised 𝑀𝑡+2 values by:

𝑀𝑡+2 ≡ 𝑅 [𝑠 (𝑀𝑡+2) −𝑇𝑡+1 (𝑠 (𝑀𝑡+2))] (159)

We will focus on perturbations of the form:

𝑐𝑡+1 = 𝑀𝑡+1 − 𝑠 (𝑀𝑡+2) + Γ𝑓 (𝑠 (𝑀𝑡+2)) (160)

for an arbitrary bounded, a.e. differentiable function 𝑓 and scalar Γ. Thus Γ𝑓 (𝑠 (𝑀𝑡+2)) gives the increase in period-

𝑡 + 1 consumption that is made possible by the perturbation when period-𝑡 + 2 wealth is held constant at 𝑀𝑡+2. The

focus of interest will be differential movements in Γ away from zero. Taking the derivative from (150), since 𝑐𝑡 and

𝜔𝑡+1 are being held constant we can write:

𝑑𝛾𝑡 (𝛼𝑡 )
𝑑Γ

����
𝑠𝑡 ,𝑐𝑡

=
1

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

𝛽
1
𝛼𝑡

𝑑𝜔Δ
𝑡+1 (𝛼𝑡 )
𝑑Γ

(161)
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Thus the critical object to evaluate is
𝑑𝜔Δ

𝑡+1 (𝛼𝑡 )
𝑑Γ . The algebraic steps for this are consigned to a Lemma:

Lemma 7.
𝑑𝜔Δ

𝑡+1 (𝛼𝑡 )
𝑑Γ satisfies the following expression:

𝑑𝜔Δ
𝑡+1 (𝛼𝑡 )
𝑑Γ

=

∫
𝛼𝑡+1

𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1))
{
𝛼2
𝑡+1𝑢

′ (𝑐𝑡+1)
𝑑𝑠𝑡+1 (𝛼𝑡+1)
𝑑𝛼𝑡+1

𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) (162)

−𝑑𝑠𝑡+1 (𝛼𝑡+1)
𝑑𝛼𝑡+1

∫ 𝛼𝑡+1

𝛼

[
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) + 𝛼2

𝑡+1𝑢
′′ (𝑐𝑡+1)

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

}
𝑑𝛼𝑡+1

+ 𝑓 (𝑠𝑡+1 (𝛼))
∫
𝛼𝑡+1

{
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) + 𝛼2

𝑡+1𝑢
′′ (𝑐𝑡+1)

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

}
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

Proof. We obtain the result by combining the income and substitution effects of the pertubation. The size of the

income income effect will be proportional to the increase in 𝑐𝑡+1 at each𝑀𝑡+2 along the budget constraint, given by:

𝑑𝑐𝑡+1

𝑑Γ

����
𝑀𝑡+2

= 𝑓 (𝑠 (𝑀𝑡+2)) (163)

The size of the substitution effect will be proportional to the change in the slope of the budget constraint for each

𝑀𝑡+2. This slope is given by:

𝑑𝑐𝑡+1

𝑑𝑀𝑡+2
= −𝑠′ (𝑀𝑡+2) (1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+2))) (164)

= − 1 − Γ𝑓 ′ (𝑠 (𝑀𝑡+2))
𝑅
[
1 −𝑇 ′

𝑡+1 (𝑠 (𝑀𝑡+2))
] (165)

The effect on this as Γ changes is:
𝑑

𝑑Γ

[
𝑑𝑐𝑡+1

𝑑𝑀𝑡+2

]
=

𝑓 ′ (𝑠 (𝑀𝑡+2))
𝑅
[
1 −𝑇 ′

𝑡+1 (𝑠 (𝑀𝑡+2))
] (166)

Notice that this is equal to:

𝑓 ′ (𝑠 (𝑀𝑡+2))
(
1 −𝑇 ′

𝑡+1 (𝑠 (𝑀𝑡+2))
) 𝑑

𝑑

(
1 −𝑇 ′

𝑡+1 (𝑠 (𝑀𝑡+2))
) [

𝑑𝑐𝑡+1

𝑑𝑀𝑡+2

] ����
Γ=0

(167)

i.e. the perturbation has an equivalent effect on the slope of the budget constraint at 𝑀𝑡+2 to an increase in the

post-tax rate of return by the proportional amount 𝑓 ′ (𝑠 (𝑀𝑡+2)).
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Substitution effects have an impact on 𝜔Δ
𝑡+1 to the extent that consumption is deferred:

𝑑𝜔Δ
𝑡+1

𝑑Γ

�����
sub

=

∫
𝛼𝑡+1

{
−𝛼𝑡+1𝑢

′ (𝑐𝑡+1) + 𝛽𝑅
(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
) ∫

𝛼𝑡+1

𝑉𝑀 (𝛼𝑡+1)
𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)

𝑑𝛼𝑡+1
𝑑𝛼𝑡+2

}
× 𝑑𝑠𝑡+1 (𝛼𝑡+1)

𝑑

(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
) (

1 −𝑇 ′
𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))

)
𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

=

∫
𝛼𝑡+1

{
−𝛼2

𝑡+1𝑢
′ (𝑐𝑡+1)

𝑑𝑐𝑡+1 (𝛼𝑡+1)
𝑑𝛼𝑡+1

1
𝜀𝑠
𝑡+1𝑠𝑡+1 (𝛼𝑡+1)

}
× 𝑑𝑠𝑡+1 (𝛼𝑡+1)

𝑑

(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
) (

1 −𝑇 ′
𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))

)
𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

= −
∫
𝛼𝑡+1

𝛼2
𝑡+1𝑢

′ (𝑐𝑡+1)
𝑑𝑐𝑡+1 (𝛼𝑡+1)
𝑑𝛼𝑡+1

𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (168)

where the intermediate line makes use of Lemma 6, and we have used the fact that the specified perturbation is

the equivalent of a change in
(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
)

by
(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
)
𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) units.

Similarly, the income effect on 𝜔Δ
𝑡+1 will be:

𝑑𝜔Δ
𝑡+1

𝑑Γ

�����
inc

=

∫
𝛼𝑡+1

𝑓 (𝑠𝑡+1 (𝛼𝑡+1)) 𝜌 (𝛼𝑡+1 |𝛼𝑡 )
{
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) +

𝑑𝑠𝑡+1 (𝛼𝑡+1)
𝑑𝑀𝑡+1

[−𝛼𝑡+1𝑢
′ (𝑐𝑡+1)

+𝛽𝑅
(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1))
) ∫

𝛼𝑡+1

𝑉𝑀 (𝛼𝑡+1)
𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)

𝑑𝛼𝑡+1
𝑑𝛼𝑡+2

]}
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

=

∫
𝛼𝑡+1

𝑓 (𝑠𝑡+1 (𝛼𝑡+1))
{
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) + 𝛼2

𝑡+1𝑢
′′ (𝑐𝑡+1)

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

}
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

=𝑓 (𝑠𝑡+1 (𝛼))
∫
𝛼𝑡+1

{
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) + 𝛼2

𝑡+1𝑢
′′ (𝑐𝑡+1)

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

}
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (169)

−
∫
𝛼𝑡+1

𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1))
𝑑𝑠𝑡+1 (𝛼𝑡+1)
𝑑𝛼𝑡+1

×
{∫ 𝛼𝑡+1

𝛼

[
𝛼𝑡+1 (𝑢′ (𝑐𝑡+1)) + 𝛼2

𝑡+1𝑢
′′ (𝑐𝑡+1)

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

}
𝑑𝛼𝑡+1

where the second equality makes use of (142). Taking substitution and income effects, (168) and (169), together,

we obtain the result. □

Applying (156), (157) and (161), we have:

𝑑𝑐𝑡

𝑑Γ
=

[
𝛼𝑡𝑢

′ (𝑐𝑡 )(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ]−1

𝑑𝑐𝑡

𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) 1

𝑑𝑐𝑡
𝑑𝛼𝑡

𝛽
1
𝛼𝑡

𝑑𝜔Δ
𝑡+1

𝑑Γ
(170)
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So:

1
𝑠𝑡

𝑑𝑠𝑡

𝑑Γ
=

[
𝛼𝑡𝑢

′ (𝑐𝑡 )(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) ]−1 1

𝑠𝑡

𝑑𝑠𝑡

𝑑
(
1 −𝑇 ′

𝑡 (𝑠𝑡 )
) 1

𝑑𝑐𝑡
𝑑𝛼𝑡

𝛽
1
𝛼𝑡

𝑑𝜔Δ
𝑡+1

𝑑Γ

=

∫
𝛼𝑡+1

𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) 𝜀𝑠𝑡
𝛼𝑡+1

𝑑𝑠𝑡+1
𝑑𝛼𝑡+1

𝛼𝑡
𝑑𝑠𝑡
𝑑𝛼𝑡

{
−𝛽𝛼𝑡+1𝑢

′ (𝑐𝑡+1)
𝛼𝑡𝑢

′ (𝑐𝑡 )
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) (171)

+ 1
𝛼𝑡+1

∫ 𝛼𝑡+1

𝛼

𝛽𝛼𝑡+1 (𝑢′ (𝑐𝑡+1))
𝛼𝑡𝑢

′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

}
𝑑𝛼𝑡+1

+ 𝑓 (𝑠𝑡+1 (𝛼)) 𝜀𝑠𝑡
1

𝛼𝑡
𝑑𝑐𝑡
𝑑𝛼𝑡

∫
𝛼𝑡+1

𝛽𝛼𝑡+1𝑢
′ (𝑐𝑡+1)

𝛼𝑡𝑢
′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

A unit change in Γ changes the slope of the 𝑡 + 1 budget constraint at 𝑠𝑡+1 by
(
1 −𝑇 ′

𝑡+1 (𝑠𝑡+1)
)
𝑓 ′ (𝑠𝑡+1) units, and shifts

it uniformly for all higher savings levels by the same amount. Consistent with the definition in Appendix A.9, we

have:

1
𝑠𝑡

𝑑𝑠𝑡

𝑑Γ
≡
∫
𝛼𝑡+1

𝑓 ′ (𝑠𝑡+1 (𝛼𝑡+1)) 𝜖𝑡 ,𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1)) Π (𝛼𝑡+1 |𝛼𝑡 )
(
−𝑑𝑠𝑡+1 (𝛼𝑡+1)

𝑑𝛼𝑡+1

)
𝑑𝛼𝑡+1 (172)

+ 𝑓 (𝑠𝑡+1 (𝛼))
1
𝑠𝑡

𝑑𝑠𝑡

𝑑𝑀𝑡+1

����
comp

where 𝑑𝑠𝑡
𝑑𝑀𝑡+1

���
comp

denotes the effect on 𝑠𝑡 of a compensated, uniform income increase at 𝑡 + 1. Since 𝜖𝑡 ,𝑡+1 is inde-

pendent of the choice of 𝑓 ′, we have:

𝜖𝑡 ,𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1)) = − 𝜀𝑠𝑡
𝛼𝑡+1

Π (𝛼𝑡+1 |𝛼𝑡 ) 𝛼𝑡 𝑑𝑠𝑡𝑑𝛼𝑡

{
−𝛽𝛼𝑡+1𝑢

′ (𝑐𝑡+1)
𝛼𝑡𝑢

′ (𝑐𝑡 )
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) (173)

+ 1
𝛼𝑡+1

∫ 𝛼𝑡+1

𝛼

𝛽𝛼𝑡+1 (𝑢′ (𝑐𝑡+1))
𝛼𝑡𝑢

′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
×𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1} (174)
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So:

𝑅𝑇 ′
𝑡 (𝑠𝑡 ) 𝑠𝑡𝜖𝑡 ,𝑡+1 (𝑠𝑡+1 (𝛼𝑡+1)) (175)

= − 𝑅𝑇 ′
𝑡 (𝑠𝑡 ) 𝑠𝑡𝜀𝑠𝑡

𝛼𝑡+1

Π (𝛼𝑡+1 |𝛼𝑡 ) 𝛼𝑡 𝑑𝑠𝑡𝑑𝛼𝑡

{
−𝛽𝛼𝑡+1𝑢

′ (𝑐𝑡+1)
𝛼𝑡𝑢

′ (𝑐𝑡 )
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) (176)

+ 1
𝛼𝑡+1

∫ 𝛼𝑡+1

𝛼

𝛽𝛼𝑡+1 (𝑢′ (𝑐𝑡+1))
𝛼𝑡𝑢

′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

}
=
𝜆Δ
𝑡+1

𝜂𝑡
𝛼𝑡𝑢

′ (𝑐𝑡 )
{
−𝛽𝑅𝛼𝑡+1𝑢

′ (𝑐𝑡+1)
𝛼𝑡𝑢

′ (𝑐𝑡 )
𝜌 (𝛼𝑡+1 |𝛼𝑡 )

𝛼𝑡+1𝜋 (𝛼𝑡+1 |𝛼𝑡 )
Π (𝛼𝑡+1 |𝛼𝑡 )

(177)

+ 1
Π (𝛼𝑡+1 |𝛼𝑡 )

∫ 𝛼𝑡+1

𝛼

𝛽𝑅𝛼𝑡+1 (𝑢′ (𝑐𝑡+1))
𝛼𝑡𝑢

′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

}
= − 𝛽𝑅𝛼𝑡+1𝑢

′ (𝑐𝑡+1) 𝜌 (𝛼𝑡+1 |𝛼𝑡 )
𝜆Δ
𝑡+1

𝜂𝑡

𝛼𝑡+1𝜋 (𝛼𝑡+1 |𝛼𝑡 )
Π (𝛼𝑡+1 |𝛼𝑡 )

(178)

+ 1
Π (𝛼𝑡+1 |𝛼𝑡 )

𝜆Δ
𝑡+1

𝜂𝑡

∫ 𝛼𝑡+1

𝛼
𝛽𝑅𝛼𝑡+1 (𝑢′ (𝑐𝑡+1))

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

Changing the unit of integration and using 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (𝑐𝑡+1 )
𝑑𝑐𝑡+1

= 𝜋𝑐
(
𝑐𝑡+1 |𝛼𝑡

)
gives condition 3.

For condition 4, we have established:

1
𝑠𝑡

𝑑𝑠𝑡

𝑑𝑀𝑡+1

����
comp

= 𝜀𝑠𝑡
1

𝛼𝑡
𝑑𝑐𝑡
𝑑𝛼𝑡

∫
𝛼𝑡+1

𝛽𝛼𝑡+1𝑢
′ (𝑐𝑡+1)

𝛼𝑡𝑢
′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (179)

So:

𝑅𝑇 ′
𝑡 (𝑠𝑡 )

𝑑𝑠𝑡

𝑑𝑀𝑡+1

����
comp

=
𝜆Δ
𝑡+1

𝜂𝑡
𝛼𝑡𝑢

′ (𝑐𝑡 )
∫
𝛼𝑡+1

𝛽𝑅𝛼𝑡+1𝑢
′ (𝑐𝑡+1)

𝛼𝑡𝑢
′ (𝑐𝑡 )

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

(180)

=
𝜆Δ
𝑡+1

𝜂𝑡

∫
𝛼𝑡+1

𝛽𝑅𝛼𝑡+1𝑢
′ (𝑐𝑡+1)

[
1 + 𝑐𝑡+1𝑢

′′ (𝑐𝑡+1)
𝑢′ (𝑐𝑡+1)

𝛼𝑡+1

𝑐𝑡+1

𝑑𝑐𝑡+1

𝑑𝛼𝑡+1

]
𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 (181)

Again, a change to the unit of integration gives the result.

A.11 Proof of Theorem 2

Equation (36), above, gives:

𝑇 ′
𝑡 (𝑠𝑡 )

𝑑𝑠𝑡

𝑑𝑀𝑡

= −
𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

(𝛼𝑡 )2 𝑢′′ (𝑐𝑡 )
(
𝑑𝑐𝑡

𝑑𝛼𝑡

)
The utility function is time-separable and concave in consumption at each date-state, which together straightfor-

wardly imply 𝑑𝑠𝑡
𝑑𝑀𝑡

> 0. Concavity further gives 𝑢′′ (𝑐𝑡 ) < 0, the strict increasingness assumption implies 𝑑𝑐𝑡
𝑑𝛼𝑡

> 0,
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and 𝜂 > 0 from (19). It follows that 𝑇 ′
𝑡 (𝑠𝑡 ) has the same sign as 𝜆Δ

𝑡+1 (𝛼𝑡 (𝑐𝑡 )), and so we focus on signing the latter

object.

To demonstrate positive taxes at interior points we start with the following Lemma:

Lemma 8. For all 𝑡 and 𝛼𝑡−1, the long-run expectation of variation in the inverse, discounted marginal utility of consumption

is bounded, i.e.:

lim
𝑠→∞

{
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) − 1
(𝛽𝑅)𝑠−𝑡 𝑢′

(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ]} < ∞

Proof. We have just established that 𝜆Δ
𝑠+1 = 0 for 𝛼𝑠 = 𝛼 and 𝛼𝑠 = 𝛼 , and so:

E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) − 1
(𝛽𝑅)𝑠−𝑡 𝑢′

(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ] (182)

=E𝑡

[
1

(𝛽𝑅)𝑠−𝑡
𝛼

E𝑠 [𝛼𝑠+1 |𝛼]
E𝑠

[
1

𝛽𝑅𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) ����𝛼] ]
− E𝑡

[
1

(𝛽𝑅)𝑠−𝑡
𝛼

E𝑠

[
𝛼𝑠+1 |𝛼

] E𝑠

[
1

𝛽𝑅𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) ����𝛼] ]
If the right-hand side of (182) is unbounded in 𝑠 then so is the expression:

1
(𝛽𝑅)𝑠−𝑡

E𝑡

[
E𝑠

[
1

𝛽𝑅𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) ����𝛼] − 𝛼E𝑠 [𝛼𝑠+1 |𝛼]
𝛼E𝑠

[
𝛼𝑠+1 |𝛼

] E𝑠

[
1

𝛽𝑅𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) ����𝛼] ] (183)

=
1

(𝛽𝑅)𝑠+1−𝑡 E𝑡

[∫
𝛼𝑠+1

[
1

𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) 𝜋 (𝛼𝑠+1 |𝛼) −
1

𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) 𝛼E𝑠 [𝛼𝑠+1 |𝛼]
𝛼E𝑠

[
𝛼𝑠+1 |𝛼

] 𝜋 (
𝛼𝑠+1 |𝛼

) ]
𝑑𝛼𝑠+1

]
By normality, if this is unbounded in 𝑠 then so too is the object:

1

(𝛽𝑅)𝑠+1−𝑡 E𝑡


∫
𝛼𝑠+1

1
𝑢′

(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) 
𝜋 (𝛼𝑠+1 |𝛼) − 𝜋

(
𝛼𝑠+1 |𝛼

) 𝛼E𝑠 [𝛼𝑠+1 |𝛼̄ ]
𝛼̄E𝑠 [𝛼𝑠+1 |𝛼]

𝜋
(
𝛼𝑠+1 |𝛼

)  𝜋
(
𝛼𝑠+1 |𝛼

)
𝑑𝛼𝑠+1

 (184)

Moreover, continuity of the density implies that the object:


𝜋 (𝛼𝑠+1 |𝛼) − 𝜋

(
𝛼𝑠+1 |𝛼

) 𝛼E𝑠 [𝛼𝑠+1 |𝛼̄ ]
𝛼̄E𝑠 [𝛼𝑠+1 |𝛼]

𝜋
(
𝛼𝑠+1 |𝛼

) 
is bounded in 𝛼𝑠+1. Thus unboundedness of (184) in 𝑠 implies:

lim
𝑠→∞

{
1

(𝛽𝑅)𝑠+1−𝑡 E𝑡

[∫
𝛼𝑠+1

1
𝑢′

(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) 𝜋 (
𝛼𝑠+1 |𝛼

)
𝑑𝛼𝑠+1

]}
= ∞
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This implies:

lim
𝑠→∞

{
1

(𝛽𝑅)𝑠−𝑡
E𝑡

[
𝛼

E𝑠

[
𝛼𝑠+1 |𝛼

] E𝑠

[
1

𝛽𝑅𝑢′
(
𝑐𝑠+1

(
𝛼 ′𝑡 , ...,𝛼 ,𝛼𝑠+1

) ) ����𝛼] ]} = ∞

and thus, since 𝜆Δ
𝑠+1

(
𝛼
)
= 0:

lim
𝑠→∞

{
1

(𝛽𝑅)𝑠−𝑡
E𝑡

[
1

𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ]} = ∞

But since consumption is increasing in 𝛼𝑠 , we have:

1
(𝛽𝑅)𝑠−𝑡

E𝑡

[
1

𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ] ≤ 1
(𝛽𝑅)𝑠−𝑡

E𝑡

[
1

𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ]
Thus:

lim
𝑠→∞

{
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) − 1
(𝛽𝑅)𝑠−𝑡 𝑢′

(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ]} = ∞

must imply

lim
𝑠→∞

{
1

E𝑡 [𝛼𝑠 ]
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠 )

]}
= ∞

But:

lim
𝑠→∞

{
1

E𝑡 [𝛼𝑠 ]
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠 )

]}
=

1 + 𝜆𝑡+1 (𝛼𝑡 )
𝜂𝑡

(185)

=
1

1 − 𝜀𝛼 (𝛼𝑡 )

{
1

E𝑡 [𝛼𝑡+1]
E𝑡

[
1

𝛽𝑅𝑢′ (𝑐𝑡+1)

]
− 𝜀𝛼 (𝛼𝑡 )
𝛼𝑡𝑢

′ (𝑐𝑡 )

}
which is finite, since the resource constraint rules out infinite expected consumption. Thus we have a contradiction.

□

Turning to the main argument, a combination of (62) and (63) gives:

𝜆Δ
𝑡+1

(
𝛼𝑡
)
− 𝜆Δ𝑡

(
𝛼𝑡−1

)
𝜌 (𝛼𝑡 |𝛼𝑡−1) = − 1

𝛼𝑡𝜋 (𝛼𝑡 |𝛼𝑡−1)

∫ 𝛼̄

𝛼𝑡

[(1 + 𝜆𝑡+1 (𝛼𝑡 )) − (1 + 𝜆𝑡 )] 𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

Or, using the definitions of 𝜌 and 𝜋Δ:

𝜆Δ
𝑡+1 (𝛼𝑡 ) 𝛼𝑡𝜋 (𝛼𝑡 |𝛼𝑡−1) =

∫ 𝛼̄

𝛼𝑡

[(
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜋Δ (𝛼𝑡 |𝛼𝑡−1)

)
− (1 + 𝜆𝑡+1 (𝛼𝑡 ))

]
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (186)

with: ∫ 𝛼̄

𝛼

[(
1 + 𝜆𝑡 + 𝜆Δ𝑡 𝜋Δ (𝛼𝑡 |𝛼𝑡−1)

)
− (1 + 𝜆𝑡+1 (𝛼𝑡 ))

]
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 = 0 (187)

Since 𝜋Δ (𝛼𝑡 |𝛼𝑡−1) is monotone increasing in 𝛼𝑡 , and 𝜆Δ0 = 0, a sufficient condition for the right-hand side of (186) to
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be weakly positive for all 𝑡 and all histories is that (1 + 𝜆𝑡+1 (𝛼𝑡 )) should be non-increasing in 𝛼𝑡 . Lemma 8 enables

this to be established. We have:

1 + 𝜆𝑡+1 (𝛼𝑡 )
𝜂𝑡

= lim
𝑠→∞

{
1 + 𝜆𝑡+1 (𝛼𝑡 )

𝜂𝑡
+

E𝑡

[
𝐷𝑡 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

]
E𝑡 [𝛼𝑠 ]

1 + 𝜆Δ
𝑡+1 (𝛼𝑡 )
𝜂𝑡

}
= lim

𝑠→∞

{
1

E𝑡 [𝛼𝑠 ]
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠 )

]}
where convergence is uniform across 𝛼𝑡 , from the first line: E𝑡 [𝐷𝑡 ,𝑠 (𝛼𝑠 )𝛼𝑠]

E𝑡 [𝛼𝑠 ] ≤ 𝜌𝑠−𝑡 where 𝜌 = sup
𝛼 ,𝛼 ′ [𝜌 (𝛼 ′ |𝛼)] < 1.

Thus we wish to show non-increasingness in the object:

lim
𝑠→∞

{
1

E𝑡 [𝛼𝑠 ]
E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠 )

]}
Clearly E𝑡 [𝛼𝑠 ] is weakly increasing in 𝛼𝑡 , so a sufficient condition is that E𝑡

[
1

(𝛽𝑅)𝑠−𝑡𝑢′ (𝑐𝑠 )

]
is non-increasing at the

limit.

Consider the difference:

E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′′𝑡
]
− E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′𝑡
]

(188)

for 𝛼 ′′𝑡 > 𝛼 ′𝑡 . We wish to show that this is weakly negative. We have:

E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′′𝑡
]
− E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′𝑡
]

=E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′′𝑡
]
− E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′′𝑡
]

+ E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′′𝑡
]
− E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) �����𝛼 ′𝑡
]
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The first term is weakly negative, by normality. The second can be rewritten:∫
𝛼𝑡+1

{∫
𝛼𝑡+2

· · ·
∫
𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋 (𝛼𝑠 |𝛼𝑠−1) 𝑑𝛼𝑠 . . . 𝜋 (𝛼𝑡+2 |𝛼𝑡+1) 𝑑𝛼𝑡+2

} [
𝜋
(
𝛼𝑡+1 |𝛼 ′′𝑡

)
− 𝜋

(
𝛼𝑡+1 |𝛼 ′𝑡

) ]
𝑑𝛼𝑡+1

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

∫
𝛼𝑡+1

{∫
𝛼𝑡+2

· · ·
∫
𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋 (𝛼𝑠 |𝛼𝑠−1) 𝑑𝛼𝑠 . . . 𝜋 (𝛼𝑡+2 |𝛼𝑡+1) 𝑑𝛼𝑡+2

}
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1𝑑𝛼𝑡

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼𝑡

∫
𝛼𝑡+1

𝛼𝑡+1
𝑑

𝑑𝛼𝑡+1

{∫
𝛼𝑡+2

· · ·
∫
𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋 (𝛼𝑠 |𝛼𝑠−1) 𝑑𝛼𝑠 . . . 𝜋 (𝛼𝑡+2 |𝛼𝑡+1) 𝑑𝛼𝑡+2

}
× 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1𝑑𝛼𝑡

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼𝑡

∫
𝛼𝑡+1

{∫
𝛼𝑡+2

· · ·
∫
𝛼𝑠

𝛼𝑡+1
𝑑

𝑑𝛼𝑡+1

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋 (𝛼𝑠 |𝛼𝑠−1) 𝑑𝛼𝑠 . . . 𝜋 (𝛼𝑡+2 |𝛼𝑡+1) 𝑑𝛼𝑡+2

}
× 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1𝑑𝛼𝑡

+
∫ 𝛼 ′′

𝑡

𝛼 ′
𝑡

1
𝛼𝑡

∫
𝛼𝑡+1

{∫
𝛼𝑡+2

· · ·
∫
𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋 (𝛼𝑠 |𝛼𝑠−1) 𝑑𝛼𝑠 . . . 𝛼𝑡+1
𝑑𝜋 (𝛼𝑡+2 |𝛼𝑡+1)

𝑑𝛼𝑡+1
𝑑𝛼𝑡+2

}
× 𝜌 (𝛼𝑡+1 |𝛼𝑡 ) 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1𝑑𝛼𝑡

= · · ·

=

∫ 𝛼 ′′
𝑡

𝛼 ′
𝑡

1
𝛼𝑡

{
𝑠∑︁

𝑟=𝑡+1

E𝑡

[
𝐷𝑡 ,𝑟 (𝛼𝑟 ) 𝛼𝑟

𝑑

𝑑𝛼𝑟

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑟 , ...,𝛼𝑠

) ) ] �����𝛼𝑡
]}
𝑑𝛼𝑡

By normality, this object has negative terms except for the period-𝑠 entry:

E𝑡

[
𝐷𝑡 ,𝑠 (𝛼𝑠 ) 𝛼𝑠

𝑑

𝑑𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] �����𝛼𝑡
]

≤
∫
𝛼𝑡+1

· · ·
∫
𝛼𝑠

𝜌𝑠−𝑡𝛼
𝑑

𝑑𝛼𝑠

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼𝑠

) ) ] 𝜋𝑑𝛼𝑠 . . . 𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1

where 𝜋 is an upper bound on 𝜋 (which exists, by continuity and the compactness of 𝐴). The right hand side of

this inequality is equal to:

𝜌𝑠−𝑡E𝑡

[
𝛼𝜋

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′
(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) − 1
(𝛽𝑅)𝑠−𝑡 𝑢′

(
𝑐𝑠

(
𝛼 ′𝑡 , ...,𝛼

) ) ] �����𝛼𝑡
]

Lemma 8 implies that the expectation is finite as 𝑠 → ∞, and so this object converges to zero as 𝑠 becomes

large. Since all other components of the difference (188) are weakly negative, uniform convergence guarantees

that 1+𝜆𝑡+1 (𝛼 ′′
𝑡 )

𝜂𝑡
− 1+𝜆𝑡+1 (𝛼 ′

𝑡 )
𝜂𝑡

≤ 0.

Thus 1 + 𝜆𝑡+1 (𝛼𝑡 ) is weakly decreasing in 𝛼𝑡 , for all 𝑡 and 𝛼𝑡−1. This leaves two options:

1. 𝜆𝑡+1
(
𝛼 ′′𝑡

)
< 𝜆𝑡+1

(
𝛼 ′𝑡
)

for some 𝛼 ′𝑡 < 𝛼
′′
𝑡
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2. 𝜆𝑡+1 (𝛼𝑡 ) is constant in 𝛼𝑡

The first case implies 𝜆Δ
𝑡+1 (𝛼𝑡 ) > 0 everywhere except endpoints, from (186) and the fact that the integral in (186) is

zero over the full range.

It remains to rule out that 1+ 𝜆𝑡+1 (𝛼𝑡 ) is constant in 𝛼𝑡 . If this were true but 𝜆Δ𝑡 > 0, we would still have positive

taxes except at endpoints, so the case is only problematic for 𝜆Δ𝑡 = 0 (or 𝑡 = 0), in which case it would imply 𝜆Δ
𝑡+1 = 0

everywhere – and so zero taxes for interior values of 𝛼𝑡 at the given node. Suppose this were true. From the

definition of 𝜆Δ
𝑡+1, the implication is:

1
𝛼𝑡𝑢

′ (𝑐𝑡 )
=

1
E𝑡 [𝛼𝑡+1]

E𝑡

[
1

𝛽𝑅𝑢′ (𝑐𝑡+1)

]
(189)

with both objects constant in 𝛼𝑡 . Suppose for now that types are persistent (𝜌 (𝛼 |𝛼 ′) > 0 for all type pairs). For

the right-hand side of (189) to be constant in 𝛼𝑡 , and given nomality, a necessary requirement is that the partial

derivatives due to persistence are weakly positive for all 𝛼𝑡 :∫
𝛼𝑡+1

1
𝑢′ (𝑐𝑡+1 )

𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝑑𝛼𝑡+1

E𝑡

[
1

𝑢′ (𝑐𝑡+1 )

] −

∫
𝛼𝑡+1

𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

E𝑡 [𝛼𝑡+1]
≥ 0

or: ∫
𝛼𝑡+1

{
1

𝑢′ (𝑐𝑡+1)
− 𝛼𝑡+1

E𝑡 [𝛼𝑡+1]
E𝑡

[
1

𝑢′ (𝑐𝑡+1)

]} 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 ≥ 0

But since 𝜆Δ
𝑡+1 = 0, and we have already established 𝜆Δ𝑠 ≥ 0 for all 𝑠, condition (75) implies:∫ 𝛼̄

𝛼 ′
𝑡+1

{
1

𝑢′ (𝑐𝑡+1)
− 𝛼𝑡+1

1 + 𝜆𝑡+1

𝜂𝑡

}
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 ≤ 0

for all 𝛼 ′
𝑡+1, with:

1 + 𝜆𝑡+1

𝜂𝑡
=

1
E𝑡 [𝛼𝑡+1]

E𝑡

[
1

𝑢′ (𝑐𝑡+1)

]
By MLRP,

𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝜋 (𝛼𝑡+1 |𝛼𝑡 ) is a strictly increasing function, and so:

∫
𝛼𝑡+1

{
1

𝑢′ (𝑐𝑡+1)
− 𝛼𝑡+1

E𝑡 [𝛼𝑡+1]
E𝑡

[
1

𝑢′ (𝑐𝑡+1)

]} 𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝑑𝛼𝑡

𝜋 (𝛼𝑡+1 |𝛼𝑡 )
𝜋 (𝛼𝑡+1 |𝛼𝑡 ) 𝑑𝛼𝑡+1 ≤ 0

with the inequality strict (a contradiction) unless the object in curly brackets is zero everywhere. This in turn

would imply that 𝜆Δ
𝑡+2 = 0 everywhere. Repeating the argument, this would imply 𝜆Δ

𝑡+3 = 0 at all successor nodes,

and so on. Thus the only possibility consistent with 𝜆Δ
𝑡+1 = 0 at interior points is that 𝜆Δ is zero from 𝑡 onwards at
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all successor nodes. But this implies a first-best allocation, with 𝛼𝑡𝑢′ (𝑐𝑡 ) constant over time and histories. This is

clearly not incentive-compatible.

It remains to provide equivalent arguments when types are iid. In this case 𝜆Δ
𝑡+1 (𝛼𝑡 ) = 0 for all 𝛼𝑡 implies:

1
𝛼𝑡𝑢

′ (𝑐𝑡 )
=

1
E𝑡 [𝛼𝑠 ]

E𝑡

[
1

(𝛽𝑅)𝑠−𝑡 𝑢′ (𝑐𝑠 )

]
for all 𝑠 > 𝑡 , with both sides constant in 𝛼𝑡 . But if the right-hand side is constant in 𝛼𝑡 then future consumption must

be constant a.e. at all horizons, which is inconsistent with incentive compatibility, given that period-𝑡 consumption

must increase strictly in 𝛼𝑡 to keep the left-hand side constant.

A.12 Proof of Proposition 5

From Lemma 3, 𝑅𝑇 ′
𝑡−1 (𝑠𝑡−1) 𝑠𝑡−1𝜖𝑡−1,𝑡

(
𝑠′𝑡
)

is equal to:

− 𝜌
(
𝛼𝑡

(
𝑐′𝑡
)
|𝛼𝑡−1

)
𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

(
𝛼𝑡

(
𝑐′𝑡
) )2

𝑢′
(
𝑐′𝑡
) (𝑑𝛼𝑡 (𝑐′𝑡 )

𝑑𝑐𝑡

)−1
𝜋𝑐

(
𝑐′𝑡 |𝛼𝑡−1)

Π𝑐
(
𝑠′𝑡 |𝛼𝑡−1

)
+ 1
Π𝑐

(
𝑠′𝑡 |𝛼𝑡−1

) ∫ 𝑐′𝑡

𝑐

𝜌 (𝛼𝑡 (𝑐𝑡 ) |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1

[
𝛼𝑡 (𝑐𝑡 ) (𝑢′ (𝑐𝑡 )) + (𝛼𝑡 (𝑐𝑡 ))2 𝑢′′ (𝑐𝑡 )

(
𝑑𝛼𝑡 (𝑐𝑡 )
𝑑𝑐𝑡

)−1
]
𝜋𝑐

(
𝑐𝑡 |𝛼𝑡−1

)
𝑑𝑐𝑡 (190)

Switching to express arguments in terms of 𝛼𝑡 :

− 𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1
(𝛼𝑡 )2 𝑢′

(
𝑐𝑡

(
𝛼 ′𝑡
) ) 𝜋 (

𝛼 ′𝑡 |𝛼𝑡−1
)

Π
(
𝛼 ′𝑡 |𝛼𝑡−1

)
+ 1
Π
(
𝛼 ′𝑡 |𝛼𝑡−1

) ∫ 𝛼 ′
𝑡

𝛼
𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

[
𝛼𝑡 (𝑢′ (𝑐𝑡 (𝛼𝑡 ))) + 𝛼2

𝑡 𝑢
′′ (𝑐𝑡 (𝛼𝑡 ))

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

]
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (191)

Integration by parts gives the following relationship:∫ 𝛼 ′
𝑡

𝛼
𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

[
𝛼𝑡 (𝑢′ (𝑐𝑡 (𝛼𝑡 ))) + 𝛼2

𝑡 𝑢
′′ (𝑐𝑡 (𝛼𝑡 ))

𝑑𝑐𝑡 (𝛼𝑡 )
𝑑𝛼𝑡

]
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡

− 𝜌 (𝛼𝑡 |𝛼𝑡−1) 𝛽𝑅
𝜆Δ𝑡

𝜂𝑡−1
(𝛼𝑡 )2 𝑢′

(
𝑐𝑡

(
𝛼 ′𝑡
) )
𝜋
(
𝛼 ′𝑡 |𝛼𝑡−1

)
=𝛽𝑅

𝜆Δ𝑡

𝜂𝑡−1

∫ 𝛼 ′
𝑡

𝛼
𝛼𝑡𝑢

′ (𝑐𝑡 (𝛼𝑡 ))
𝛼𝑡−1

𝑑𝜋 (𝛼𝑡 |𝛼𝑡−1 )
𝑑𝛼𝑡−1

𝜋 (𝛼𝑡 |𝛼𝑡−1)
𝜋 (𝛼𝑡 |𝛼𝑡−1) 𝑑𝛼𝑡 (192)

So:

𝑠𝑡−1𝜖𝑡−1,𝑡
(
𝑠′𝑡
)
= 𝛽

(
𝜆Δ𝑡
𝜂𝑡−1

)
𝑇 ′
𝑡−1 (𝑠𝑡−1)

E𝑡−1

𝛼𝑡𝑢′ (𝑐𝑡 (𝛼𝑡 ))
𝛼𝑡−1

𝑑𝜋 (𝛼𝑡 |𝛼𝑡−1 )
𝑑𝛼𝑡−1

𝜋 (𝛼𝑡 |𝛼𝑡−1)

������𝛼𝑡 ≤ 𝛼 ′𝑡
 (193)
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The expectation term contains two objects that are monotone increasing in 𝛼𝑡 , under the maintained assumptions

(including MLRP). The term
𝑑𝜋 (𝛼𝑡 |𝛼𝑡−1 )

𝑑𝛼𝑡−1
𝜋 (𝛼𝑡 |𝛼𝑡−1 ) is zero in expectation, and so crosses zero once, whilst 𝛼𝑡𝑢′ (𝑐𝑡 (𝛼𝑡 )) is strictly

positive. From Lemma 5:(
𝜆Δ𝑡
𝜂𝑡−1

)
𝑇 ′
𝑡−1 (𝑠𝑡−1)

=

{
𝛼𝑡𝑢

′ (𝑐𝑡 ) − 𝛽𝑅
(
1 −𝑇 ′

𝑡−1 (𝑠𝑡 )
) ∫

𝛼𝑡+1

𝑉𝑀 ,𝑡+1 (𝑀𝑡+1;𝛼𝑡+1) 𝛼𝑡
𝑑𝜋 (𝛼𝑡+1 |𝛼𝑡 )

𝑑𝛼𝑡
𝑑𝛼𝑡+1

}−1

> 0

where the inequality follows a step used in the proof of Lemma 8. Thus for sufficiently low 𝛼 ′𝑡 (corresponding to

high 𝑠′𝑡 ) both sides of the expression must be negative, whist positive correlation between the components implies

it is positive for sufficiently high 𝛼 ′𝑡 (low 𝑠′𝑡 ). Once positive for a given 𝛼 ′𝑡 , it is clear that the expectation term must

remain positive for all 𝛼 ′′𝑡 > 𝛼 ′𝑡 , since
𝑑𝜋 (𝛼𝑡 |𝛼𝑡−1 )

𝑑𝛼𝑡−1
𝜋 (𝛼𝑡 |𝛼𝑡−1 ) must be positive on the higher type range. The result follows.
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